碳达峰碳中和情报支持平台

Carbon Peak and Carbon Neutralization Information Support Platform

碳达峰碳中和情报支持平台

在列表中检索

1385
1783
744

共检索到 4458
renewable carbon news
Permalink to InventWood Announces $15 Million First Close of Series A to Launch Revolutionary SUPERWOOD Material [科技资讯]

© InventWood InventWood, creator of revolutionary SUPERWOOD, today announced it has secured $15 million in the first close of its Series A funding round. This investment marks a significant milestone as the company prepares to begin shipments from its first commercial manufacturing facility in Frederick, Maryland, in the third quarter of 2025. InventWood has now successfully secured more than $50 million in total capital, which supported the construction of its first production facility and positions the company to scale rapidly . SUPERWOOD represents a fundamental breakthrough in materials science, transforming ordinary wood at the molecular level to create an extraordinary building material that is stronger than steel. SUPERWOOD outperforms traditional construction materials while preserving all of wood’s beloved natural qualities. The material maintains wood’s warmth, texture, workability, and natural aesthetic while being engineered to withstand extreme weather, high humidity, fire, rot, and pests. SUPERWOOD will enable entirely new approaches to construction as architects and builders seek economic and climate-resilient solutions with dramatically reduced environmental impact. “SUPERWOOD demonstrates what’s possible when we combine nature’s most highly evolved structure with revolutionary science,” said Alex Lau, CEO of InventWood. “This funding enables us to scale production of a material that will fundamentally change how we build, creating structures that are stronger and lighter than steel while retaining all the biogenic qualities people have treasured in wood for millennia.” “InventWood has achieved an extraordinary breakthrough that exalts the genius of the natural world,” said Paul Hawken, environmentalist, author, and investor. “By transforming rather than replacing wood, SUPERWOOD has created an astonishing material that will be the future of the built environment worldwide.” The funding milestone follows InventWood’s groundbreaking research that began in 2018, when founder Dr. Liangbing Hu developed the patented process that removes specific components of wood’s cellular structure and compresses it, creating a material up to 12 times stronger and 10 times tougher than the wood it came from. Dr. Hu brought insights and tools from his work in carbon nanotubes the world of wood, with his research leading to a material with strength-to-weight ratio almost 10x that of steel while maintaining the tactile quality, grain patterns, and natural character that make wood irreplaceable in our built environment. In an era where America’s reliance on imports of steel, aluminum and other materials is of national concern, InventWood’s Frederick manufacturing facility will utilize a domestically focused supply chain, sourcing wood from responsibly managed American forests and processing it entirely within the United States. This approach ensures quality control while supporting American jobs and reducing transportation and supply chain risks. “We’re prioritizing domestic sourcing and production to maintain the exacting standards SUPERWOOD requires,” continued Lau. “With commercial shipments beginning in Q3 of this year, we’re focused on ensuring every step of our process, from forest to final product, delivers uncompromising quality while supporting American manufacturing.” The company recently formed a strategic partnership with Intectural, a leading distributor of high-performance architectural materials, positioning SUPERWOOD for rapid adoption across North America. Initial shipments will focus on commercial and residential applications requiring superior strength and climate resilience. The firm’s development and the launch of its first facility have been supported by the U.S. Department of Energy, the U.S. Department of Defense, Grantham, Builders Vision, the JLL Foundation, and Baruch Future Ventures, showcasing strong investor confidence in InventWood’s transformative technology and commercial potential. By loading the video, you agree to YouTube’s privacy policy. Learn more Load video Always unblock YouTube About InventWood InventWood transforms nature’s oldest building material into something extraordinary. With SUPERWOOD, we’ve reinvented wood itself, delivering a building material that’s superstrong, superdurable, and engineered to outperform conventional alternatives. Our technology creates beautiful, biogenic buildings using domestically sourced wood, directly supporting the health and longevity of American forests. SUPERWOOD’s nano-cellulose-based innovation retains wood’s countless natural qualities, from its organic warmth and tactile feel to its intrinsic connection to natural environments, while providing unmatched performance. InventWood has received significant recognition and support, including a $20 million SCALEUP award from the U.S. Department of Energy in 2022, as well as funding from prominent organizations including Grantham, Builders Vision, JLL Foundation, and Baruch Future Ventures. With over $50 million in total capital secured, the company is poised to revolutionize the construction industry. Learn more at www.inventwood.com. Source InventWood, press release, 2025-04-30. Supplier InventWood LLC Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to Ethanol industry calls for carbon capture support following economic study [科技资讯]

The economic impact of the renewable fuels industry in Iowa was $800 million less in 2024 than it was in… Full text: https://www.agriculture.com/ethanol-industry-calls-for-carbon-capture-support-following-economic-study-11731577 Author Iowa Capital Dispatch Source SuccessfulFarming, 2025-05-09. Supplier BOLD Alliance Iowa Corn Promotion Board/ Iowa Corn Growers Association Iowa Renewable Fuels Association National Corn Growers Association Summit Carbon Solutions Wolf Carbon Solutions Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to Covation Biomaterials kündigt die Einführung von BioPTMEG auf der Chinaplas 2025 an [科技资讯]

© Covation Biomaterials Covation Biomaterials LLC („CovationBio®“), ein Unternehmen für Biomaterialien mit fortschrittlicher Technologie in der biobasierten Materialindustrie, kündigt stolz seine neueste Innovation an, CovationBio® bioPTMEG, das fortschrittliche, nachhaltige Polytetramethylenetherglykol (PTMEG), das eine hohe Leistung bei deutlich geringerer Umweltbelastung bietet. BioPTMEG ist eine biobasierte Alternative zu erdölbasiertem PTMEG und hilft Kunden, ihre Abhängigkeit von nicht erneuerbaren Materialien zu verringern und die Haltbarkeit und Elastizität zu erhalten, die von Hochleistungsanwendungen wie Elasthan, Polyurethanen und thermoplastischen Elastomeren erwartet wird. Einige der überragenden Nachhaltigkeitsvorteile von CovationBio® bioPTMEG sind: eine beträchtliche Verringerung der Treibhausgasemissionen im Vergleich zu herkömmlichen fossilen Energieträgern; ein Produkt, das zu 100% biobasiert ist und aus jährlich erneuerbaren Ressourcen gewonnen wird; die Verwendung von Rohstoffen wie Maiskolben, die nicht in Konkurrenz zu primären Nahrungsquellen stehen; eine geringere Abhängigkeit von der Nutzung nicht erneuerbarer fossiler Brennstoffe. Drop-in-Leistung, die eine Umstellung auf biobasierte Rohstoffe ohne größere Prozessänderungen ermöglicht Herr Feifeng You, Vorsitzender von CovationBio, erklärte: „Die Vision von CovationBio als Naturgewalt ist es, eine nachhaltige, dekarbonisierte Materialindustrie aufzubauen. Zu diesem Zweck sind wir stolz darauf, CovationBio®bioPTMEG auf den Markt zu bringen. Sie nutzt den von den Pflanzen aus der Atmosphäre aufgenommenen Kohlenstoff zur Herstellung von Materialien und verbessert so die Lebensqualität. Wir erhöhen die Produktion, um den CO2-Fußabdruck zu verringern. Dies ist unsere Verantwortung gegenüber künftigen Generationen. Durch kontinuierliche Innovation und Zusammenarbeit streben wir den Aufbau einer nachhaltigen und regenerativen Werkstoffindustrie an. Wir laden alle Beteiligten ein, sich uns anzuschließen, um eine grünere, sauberere und wohlhabendere Welt zu schaffen”. Dieser „Drop-in”-Ersatz kann nahtlos in bestehende Fertigungsprozesse integriert werden und erfordert keine umfangreiche oder gar keine Produktentwicklung”, fügte er hinzu. Der Bau einer Anlage in der Provinz Jiangsu, Qidong, wird voraussichtlich Ende 2025 mechanisch abgeschlossen sein. Die kommerzielle Produktion soll im ersten Quartal 2026 beginnen. Die Besucher der Chinaplas können den Stand von CovationBio® in Halle 20, Stand H21 vom 15. bis 18. April 2025 besuchen. In Anlehnung an das diesjährige Thema „Transformation, Zusammenarbeit, Nachhaltigkeit” wird das Team aufzeigen, wie CovationBio® bioPTMEG in Kundenmaterialien integriert werden kann und Nachhaltigkeitsstrategien fördert. Haftungsausschluss: Die obigen Aussagen zur Lebenszyklusanalyse (LCA) des Produkts und zur Produktleistung beruhen auf Tests von CovationBio und True North, einer maßgeblichen dritten Partei in den USA. Da es sich bei den betreffenden Daten um Geschäftsgeheimnisse handelt, werden sie nur auf rechtliches Ersuchen in Verwaltungs- oder Gerichtsverfahren weitergegeben. Wir danken Ihnen für Ihr Verständnis. About CovationBio Covation Biomaterials LLC wurde 2022 in Newark, Delaware, gegründet und ist ein Unternehmen für Biomaterialien mit fortschrittlicher Technologie in der biobasierten Materialbranche, das ein Produktportfolio mit leistungsstarken, nachhaltigen Lösungen anbietet. Das Unternehmen baut auf dem reichen Erbe der bahnbrechenden wissenschaftlichen Innovationen von DuPont auf und liefert weiterhin neuartige Lösungen in großem Maßstab für verschiedene Branchen, darunter Bekleidung, Teppichböden, Kosmetika, Lebensmittel und Verpackungen. Mit Produktlinien wie Sorona®, Susterra® und Zemea®hat es sich Covation Biomaterials zur Aufgabe gemacht, Bausteine zu liefern, die es den Kunden ermöglichen, biobasierte Produkte für jedermann zugänglich zu machen. Covation, Covation Biomaterials, Sorona, Susterra und Zemea sind Marken von Covation Biomaterials™ oder seinen verbundenen Unternehmen. Für weitere Informationen über Covation Biomaterials besuchen Sie bitte CovationBio.com und folgen Sie uns auf WeChat, LinkedIn, Instagram und Facebook. Source Covation Biomaterials, 2025-04-14. Supplier Chinaplas Covation Biomaterials Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to The transition to green chemistry: ‘Circularity is a team sport’ [科技资讯]

The fact that fossil fuels are running out is no longer a surprise. Sustainable fuels will replace gasoline and diesel… Full text: https://ioplus.nl/en/posts/the-transition-to-green-chemistry-circularity-is-a-team-sport Author Linda Bak Source Innovation Origins, 2025-05-13. Supplier BioBTX Brightlands Chemelot Campus (NL) Chemport Europe Circtec CuRe Technology EEW Energy from Waste North Netherlands Development Agency NOM Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to From beer to bioplastics: How LIFE RESTART fuels circular economy and cuts plastic waste in Sicily [科技资讯]

Backed by the LIFE Programme and C2M support, the LIFE RESTART project tackles environmental and economic challenges by turning beer industry waste into high-performance bioplastics. How? By substituting 300 tonnes of fossil-based plastics with bioplastics, as a more sustainable alternative, and having projected a €2 million turnover within five years, the project is delivering a tangible model for circular economy innovation. A circular solution driving sustainable innovation LIFE RESTART converts beer spent grain into bioplastics, offering several potential market applications in sectors such as automotive, footwear, construction and toys. By incorporating 35% of this waste material, the solution delivers a dual benefit: reducing demand for fossil-based and virgin biopolymers, and easing pressure on natural resources. This directly contributes to reducing plastic pollution and, thanks to the project’s rural location, helps address economic decline in the area. Regenerating the region with a hub for local development The project’s production plant is located in Roccavaldina, a small Sicilian village dealing with depopulation, unemployment and limited economic opportunities. Through this initiative, led by the Messina foundation, the once-abandoned factory site is now producing sustainable materials and, at the same time, becoming a hub for local development, engaging researchers, designers and other professionals to revitalise the region. LIFE RESTART contributes to the EU’s “new Circular Economy Action Plan For a cleaner and more competitive Europe”, the European Green Deal, and regulations regarding the European Climate Law. C2M support “essential” to access EU market The LIFE RESTART project has benefited from the LIFE Programme and C2M support not only for physical implementation – such as launching the production site and installing equipment – but also for strategic market access. “Creating a great product is one thing, but getting it to sell in the market is a whole different story. So, thanks to C2M, being able to connect with the European markets and potential stakeholders, understanding where to focus, and which products are more suitable for the bioplastic is indeed essential in order to achieve market access”, explains Giacomo Pinaffo, LIFE RESTART’s project manager. The project leader also highlighted the valuable support and flexibility provided by the LIFE Programme and the C2M support, which have been instrumental throughout the project’s development and implementation. “I am also very grateful to the LIFE Programme for the flexibility shown during the process, namely during the project implementation period, which enabled us to follow the changes that occurred and that happened due to the research phase, due to the implementation phase, and to the different variables that we needed to take into consideration when implementing such a project”, Pinaffo added. Learn more about this initiative, which focuses on Waste use, Circular economy and Value chains, Food and Beverages, Industrial waste and Waste recycling by exploring our project fiche. How LIFE helps close-to-market projects LIFE RESTART is one of the projects supported under LIFE’s close-to-market (C2M) activities. C2M supports LIFE beneficiaries in bringing their groundbreaking solutions into the market. The projects gain access to a dedicated team with extensive experience, offering insights on business coaching, advisory on business plan development, presentation guidance and expert connection, among other activities. Looking for support to develop your cleantech solution and bring it to the market? Check out our LIFE Close-to-market page. Source European Commission, press release, 2025-05-13. Supplier European Commission European Union MeSSInA Foundation Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to Faserverbundwerkstoff aus der Natur: Forschende entwickeln lebendiges Material aus Pilzen [科技资讯]

Die lebende Folie ist nahezu transparent und besitzt eine gute Reissfestigkeit. Sie könnte etwa als Bio-Kunststoff zum Einsatz kommen. © Empa Pilze gelten als eine vielversprechende Quelle für biologisch abbaubare Materialien. Empa-Forschende haben ein neues Material entwickelt, das auf einem Pilzmycel und dessen extrazellulärer Matrix basiert. Das verleiht dem Biomaterial besonders vorteilhafte Eigenschaften. Nachhaltig produzierte, biologisch abbaubare Materialien sind ein wichtiger Schwerpunkt der modernen Materialforschung. Doch die Verarbeitung natürlicher Materialien wie Cellulose, Lignin oder Chitin stellt Forschende vor einen Kompromiss. In ihrer reinen Form sind die natürlichen Werkstoffe zwar biologisch abbaubar, aber oft nicht leistungsfähig genug. Durch chemische Verarbeitungsschritte lassen sie sich stärker, widerstandsfähiger oder geschmeidiger machen – dabei büssen sie aber wiederum an Nachhaltigkeit ein. Empa-Forschende aus dem Labor «Cellulose and Wood Materials» haben nun ein biobasiertes Material entwickelt, das diesen Kompromiss geschickt umgeht. Es ist nicht nur vollständig biologisch abbaubar, sondern auch reissfest und besitzt vielseitige funktionale Eigenschaften. Das alles mit minimalen Verarbeitungsschritten und ganz ohne Chemie – man kann es sogar essen. Sein Geheimnis: Es lebt. Von der Natur optimiert In der Natur wächst der Gemeine Spaltblättling auf totem Holz und bildet Fruchtkörper, die in weiten Teilen der Welt als Speisepilz gelten. © Adobe Stock Als Grundlage für ihr neuartiges Material verwendeten die Forschenden das Mycel des Gemeinen Spaltblättlings, ein weit verbreiteter essbarer Pilz, der auf totem Holz wächst. Mycelien sind Wurzel-ähnliche fadenförmige Pilzstrukturen, die bereits rege als potenzielle Materialquellen erforscht werden. Normalerweise werden die Mycelfasern – sogenannte Hyphen – dafür gereinigt und gegebenenfalls chemisch bearbeitet, was den bekannten Kompromiss zwischen Leistung und Nachhaltigkeit mit sich bringt. Die Empa-Forschenden wählten einen anderen Ansatz. Anstatt das Mycel aufwändig aufzubereiten, verwenden sie es als Ganzes. Beim Wachsen bildet der Pilz nämlich nicht nur die Hyphen aus, sondern auch eine sogenannte extrazelluläre Matrix: ein Netz aus unterschiedlichen faserartigen Makromolekülen, Proteinen und weiteren biologischen Stoffen, die die lebenden Zellen absondern. «Der Pilz nutzt diese extrazelluläre Matrix, um sich Struktur und andere funktionale Eigenschaften zu verleihen. Warum sollten wir nicht dasselbe tun?», erklärt Empa-Forscher Ashutosh Sinha. «Die Natur hat bereits ein optimiertes System entwickelt», ergänzt Gustav Nyström, Leiter des «Cellulose and Wood Materials»-Labors. Mit ein bisschen gezielter Nachoptimierung haben die Forschenden der Natur auf die Sprünge geholfen. Aus der enormen genetischen Diversität des Gemeinen Spaltblättlings wählten sie einen Stamm, der besonders viel von zwei bestimmten Makromolekülen bildet: dem langkettigen Polysaccharid Schizophyllan und dem seifenähnlichen Protein Hydrophobin. Hydrophobine sammeln sich aufgrund ihrer Struktur an Grenzflächen zwischen polaren und apolaren Flüssigkeiten, beispielsweise Wasser und Öl. Schizophyllan ist eine Nanofaser: weniger als einen Nanometer dick, aber mehr als tausendmal so lang. Gemeinsam verleihen diese zwei Biomoleküle dem lebenden Mycelmaterial Eigenschaften, die es für verschiedenste Einsatzgebiete fit machen. Ein lebender Emulgator Dank den Hilfsmolekülen in ihrer extrazellulären Matrix sind die Mycelfasern gute natürliche Emulgatoren – sie sind sogar essbar. © Empa Die Vielseitigkeit ihres Materials zeigten die Forschenden gleich selbst im Labor. In ihrer Studie, die vor kurzem in der Fachzeitschrift «Advanced Materials» veröffentlicht wurde, stellten sie zwei Anwendungsmöglichkeiten für das lebende Material vor: eine kunststoffähnliche Folie und eine Emulsion. Emulsionen sind Mischungen aus zwei oder mehr Flüssigkeiten, die sich normalerweise nicht mischen lassen. Wer ein Beispiel sehen möchte, braucht bloss den Kühlschrank zu öffnen: Milch, Salatsauce oder Mayonnaise zählen dazu. Aber auch diverse Kosmetika, Farben und Lacke liegen als Emulsionen vor. Eine Herausforderung besteht darin, solche Gemische zu stabilisieren, damit sie sich über Zeit nicht wieder in die einzelnen Flüssigkeiten «entmischen». Hier zeigt sich das lebende Mycel von seiner besten Seite: Sowohl die Schizophyllan-Fasern als auch die Hydrophobine wirken als Emulgatoren. Und der lebende Pilz gibt laufend mehr von diesen Molekülen ab. «Das ist wohl die einzige Art von Emulsion, die mit der Zeit stabiler wird», sagt Sinha. Sowohl die Pilzfäden selbst als auch ihre Hilfsmoleküle sind dabei komplett ungiftig, biologisch kompatibel und sogar essbar – der Gemeine Spaltblättling gilt in weiten Teilen der Welt als Speisepilz. «Die Anwendung als Emulgator in der Kosmetik- und Lebensmittelindustrie ist daher besonders interessant», weiss Nyström. Von Kompostbeuteln zu Batterien Die Pilzkultur des Gemeinen Spaltblättlings auf einem Nährmedium. Aus der Petrischale rechts wurden Proben entnommen. © Empa Aber auch für klassische Materialanwendungen kommt das lebende Pilznetzwerk in Frage. In einem zweiten Experiment haben die Forschenden dünne Folien aus ihrem Mycel hergestellt. Die extrazelluläre Matrix mit den langen Schizophyllan-Fasern verleiht dem Material eine sehr gute Reissfestigkeit, die durch gezieltes Ausrichten der Pilz- und Polysaccharidfasern weiter verstärkt werden kann. «Wir verbinden die bewährten Methoden zur Verarbeitung von faserbasierten Materialien mit dem aufstrebenden Gebiet der lebenden Materialien», erläutert Nyström. Sinha ergänzt: «Unser Mycel ist sozusagen ein lebender Faserverbundwerkstoff.» Die Eigenschaften dieses Werkstoffs können die Forschenden steuern, indem sie die Bedingungen verändern, unter denen der Pilz wächst. Denkbar wäre auch der Einsatz anderer Pilzstämme oder -arten, die andere funktionale Makromoleküle produzieren. Die Arbeit mit dem lebendigen Werkstoff bringt aber auch gewisse Herausforderungen mit sich. «Biologisch abbaubare Materialien reagieren immer auf ihre Umgebung», weiss Nyström. «Wir wollen Anwendungsmöglichkeiten finden, bei denen diese Interaktion nicht hinderlich ist – oder sogar von Vorteil.» Die biologische Abbaubarkeit ist indes nur ein Teil der Geschichte für das Mycel. Es ist auch biologisch abbauend: Der Gemeine Spaltblättling kann Holz und pflanzliche Materialien aktiv zersetzen. Hier sieht Sinha eine weitere Anwendungsmöglichkeit: «Anstelle der kompostierbaren Plastikbeutel für Küchenabfälle könnte man daraus Beutel herstellen, die die organischen Abfälle selbst kompostieren», sagt der Forscher. Die Pilzfolie reagiert reversibel auf Feuchtigkeit und könnte für biobasierte Feuchtigkeitssensoren eingesetzt werden. © Empa Vielversprechende Anwendungen gibt es für das Mycel aber auch im Bereich der nachhaltigen Elektronik. So reagiert das Pilzmaterial beispielsweise reversibel auf Feuchtigkeit und könnte zur Herstellung von bioabbaubaren Feuchtigkeitssensoren verwendet werden. Eine weitere Anwendung, an der Nyströms Team gerade arbeitet, kombiniert das lebende Material mit zwei weiteren Forschungsprojekten aus dem «Cellulose and Wood Materials»-Labor: der Pilzbatterie und der Papierbatterie. «Wir wollen eine kompakte, biologisch abbaubare Batterie herstellen, deren Elektroden aus einem lebenden ‹Pilzpapier› bestehen», sagt Sinha. Originalveröffentlichung A Sinha, LG Greca, N Kummer, C Wobill, C Reyes, P Fischer, S Campioni, G Nyström: Living Fiber Dispersions from Mycelium as a New Sustainable Platform for Advanced Materials; Advanced Materials (2025); doi: 10.1002/adma.202418464 Author Anna Ettlin Source EMPA, Pressemitteilung, 2025-05-13. Supplier Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to Innovative CO2 Capture: Recovering Wastewater CO2 for Sustainable Polymer Production  [科技资讯]

Demonstration Plant © HICCUPS The HICCUPS project aims to efficiently convert biogenic CO₂ from wastewater treatment plants into bio-based polymers for packaging. Using an electrochemical process, CO₂ from sludge is transformed into monomers and polymerised into polylactic-co-glycolic acid (PLGA). This biodegradable polymer, with excellent barrier properties, offers a renewable alternative to fossil-based polyethylene. To showcase its potential, PLGA-based packaging materials, including coated paper for food packaging and moulded plastic, will be developed. Federico Ferrari © ACCIONA Federico Ferrari is leading Work Package 1 (WP1) of the HICCUPS project, which focuses on demonstrating CO₂ capture and purification from biogas produced at a wastewater treatment plant operated by ACCIONA. He works at ACCIONA Water Business in the Innovation Department, as a project manager in the wastewater treatment and resources recovery area. ACCIONA specializes in comprehensive water management, including the whole water cycle. The company designs, builds, and operates distribution networks, and drinking water, desalination, and wastewater treatment plants around the world. Why is capturing CO₂ from wastewater treatment plants important, and how does it contribute to sustainability? Wastewater treatment plants (WWTP) are often neglected as significant CO₂ emitters. According to EU taxonomy compass, anaerobic digestion of sewage sludge contributes to climate mitigation when the produced biogas is used directly for the generation of electricity or heat. However, the biogas from WWTPs includes a considerable amount of CO₂ (30-40%) accompanying the CH4 (60-70%) that even if considered biogenic CO₂ it is currently being emitted to the atmosphere. Although there are other impurities (N2, H2S, O₂ and volatile organic compounds) in the biogas, due to its high concentration, separating the CO₂ from this stream is considered easier and more convenient for its valorisation when compared to other sources as flue gas where the presence of N2, NOX/SOX add complexity to the process. Furthermore, this would create a side stream much richer in bio-methane than the starting biogas, potentially enabling its injection in the natural gas grid, or to be used as vehicle fuel or even as feedstock in chemical industry, to obtain another source of benefits. To date, only few WWTP have integrated a carbon capture unit in their upgrading process. An example is the Arabern WWTP (Switzerland) which can capture and liquefy up to 2,000 tons of CO₂ per year and proved that CO₂ capture in WWTP is a profitable business model. How does AQUALUNG’s technology turn CO₂ from wastewater into something useful, like bioplastics? CO₂ from biogas has to be separated a priori the utilization process for conversion into valuable products. AQUALUNG’s membrane separation process (capture technology) enables to reduce the volume of the gas treated (65% of gas removed as biomethane on the upstream) and simultaneously meets the purity specifications for CO₂ required for the utilization process in the downstream side. Such an interim process buffer also regulated the flow and quality of CO₂ delivered to the electrochemical process. What makes the membranes used in CO₂ capture special, and how do they improve efficiency? AQUALUNG’s process works with facilitated transport membranes which can operate at lower pressure ratio (feed to permeate pressure) compared to its competitors. Such low-pressure processes decrease cost and the facilitated transport process also delivers high quality CO₂ purity on the downstream side which is required for the utilization. Additionally, AQUALUNG’s membranes operate under high humidity which avoids the need for pre-treatment (dehumidification system) leading to much simpler process than other membrane solutions. What are the main challenges in building a real-world demonstration plant for capturing CO₂ at a wastewater treatment facility? Impurities present in biogas can cause problems to membrane lifetime or safe operations of membrane systems especially in humid and small-scale operations. Membrane manufacturing at low cost and high quality is also another challenge in real-world. AQUALUNG is working with state-of-the-art membrane manufacturer to derisk the latter challenge. How will you ensure that the CO₂ capture technology developed in HICCUPS can be used on a larger scale in the future? The carbon capture system developed in the HICCUPS project is designed for easy scalability, leveraging hollow fiber membrane technology and a modular process architecture. This scalability is achieved through a two-pronged approach. First, by ensuring the production and replicability of membrane modules. The manufacturing of these modules is a critical component of the upscaling strategy and is carried out by AQUALUNG, together with its partners, who are responsible for membrane upscaling, testing, and quality assurance. Second, by designing and demonstrating a robust, modular, and scalable process that can be adapted to larger gas volumes simply by increasing the number of capture units. This approach enables the system to handle the full gas flow from any WWTP. Within the HICCUPS project, this is validated through demonstration activities conducted under WP1, involving all partners in the consortium. Additionally, AQUALUNG’s patented membranes operate at low pressures, significantly reducing energy consumption. This makes the carbon capture process more cost-effective than other membrane technologies and increases its attractiveness in the market Will adding CO₂ capture technology change how wastewater treatment plants operate, or will it fit smoothly into existing systems? As for biogas upgrade to biomethane, carbon capture targets biogas refinement without disrupting core water and sludge treatment processes. By separating CO₂ from biogas (typically 30-45% of content), the resulting biomethane (if ≥95% CH₄) gains value for grid injection or renewable vehicle fuel, while captured CO₂ can also be monetized (e.g., industrial use as the one under study in this project or carbon credits). For this reason, a CO₂ capture plant would not imply fundamental changes in the WWTP operation. Nevertheless, the opportunity of valorising the methane richer side stream out of the premises would divert the biogas from its conventional applications, generally cogeneration. This fact may require alternative energy sources, however only in the case biomethane is valorised elsewhere. However, the integration of CO₂ capture into WWTPs will increase operation and maintenance costs and the requirements of skilled personnel for operation troubleshooting. A successful business case and a robust value chain of the produced CO₂ and eventually, biomethane, will be required to compensate these costs. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. The project is supported by the Circular Bio-based Europe Joint Undertaking and its members. The project is supported by the Circular Bio-based Europe Joint Undertaking and its members. Source HICCUPS, original text, 2025-05-22. Supplier ACCIONA Infrastructure Aqualung CarbonCapture Circular Bio-based Europe Joint Undertaking (CBE JU) European Commission European Union HICCUPS nova-Institut GmbH Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to Nature’s fiber composite: Researchers develop living material from fungi [科技资讯]

The thin mycelial film is almost transparent and has good tensile strength. It could be used as a living bioplastic. © Empa Fungi are considered a promising source of biodegradable materials. Empa researchers have developed a new material based on a fungal mycelium and its own extracellular matrix. This gives the biomaterial particularly advantageous properties. Sustainably produced, biodegradable materials are an important focus of modern materials science. However, when working natural materials such as cellulose, lignin or chitin, researchers face a trade-off. Although these substances are biodegradable in their pure form, they are often not ideal when it comes to performance. Chemical processing steps can be used to make them stronger, more resistant or more supple – but in doing so, their sustainability is often compromised. Empa researchers from the Cellulose and Wood Materials laboratory have now developed a bio-based material that cleverly avoids this compromise. Not only is it completely biodegradable, it is also tear-resistant and has versatile functional properties. All this with minimal processing steps and without chemicals – you can even eat it. Its secret: It’s alive. Optimized by nature In nature, the split-gill mushroom grows on dead wood and forms fruiting bodies that are considered edible mushrooms in many parts of the world. © Adobe Stock As the basis for their novel material, the researchers used the mycelium of the split-gill mushroom, a widespread edible fungus that grows on dead wood. Mycelia are root-like filamentous fungal structures that are already being actively researched as potential sources of materials. Normally, the mycelial fibers – known as hyphae – are cleaned and, if necessary, chemically processed, which brings about the above-mentioned trade-off between performance and sustainability. The Empa researchers chose a different approach. Instead of treating the mycelium, they use it as a whole. As it grows, the fungus not only forms hyphae, but also a so-called extracellular matrix: a network of various fiber-like macromolecules, proteins and other biological substances that the living cells secrete. “The fungus uses this extracellular matrix to give itself structure and other functional properties. Why shouldn’t we do the same?” explains Empa researcher Ashutosh Sinha. “Nature has already developed an optimized system,” adds Gustav Nyström, head of the Cellulose and Wood Materials lab. With a bit of additional optimization, the researchers gave nature a helping hand. From the enormous genetic diversity of the split-gill, they selected a strain that produces particularly high levels of two specific macromolecules: the long-chain polysaccharide schizophyllan and the soap-like protein hydrophobin. Due to their structure, hydrophobins collect at interfaces between polar and apolar liquids, for example water and oil. Schizophyllan is a nanofiber: less than a nanometer thick, but more than a thousand times as long. Together, these two biomolecules give the living mycelium material properties that make it suitable for a wide range of applications. A living emulsifier Thanks to the auxiliary molecules in their extracellular matrix, the mycelial fibers are good natural emulsifiers – they are even safe to eat. © Empa The researchers demonstrated the versatility of their material in the laboratory. In their study, which was published recently in the journal Advanced Materials, they showcased two possible applications for the living material: a plastic-like film and an emulsion. Emulsions are mixtures of two or more liquids that normally do not mix. All you have to do to see an example is open the fridge: Milk, salad dressing or mayonnaise are all emulsions. And various cosmetics, paints and varnishes also take the form of emulsions. One challenge is to stabilize such mixtures so that they do not separate into the individual liquids over time. This is where the living mycelium shows its strengths: Both the schizophyllan fibers and the hydrophobins act as emulsifiers. And the fungus keeps releasing more of these molecules. “This is probably the only type of emulsion that becomes more stable over time,” says Sinha. Both the fungal filaments themselves and their extracellular molecules are completely non-toxic, biologically compatible and edible – the split-gill mushroom is routinely eaten in many parts of the world. “Its use as an emulsifier in the cosmetics and food industry is therefore particularly interesting,” says Nyström. From compost bags to batteries The fungal culture of the split-gill mushroom on a culture medium. Samples were taken from the Petri dish on the right. © Empa The living fungal network is also suitable for classic material applications. In a second experiment, the researchers manufactured the mycelium into thin films. The extracellular matrix with its long schizophyllan fibers gives the material very good tensile strength, which can be further enhanced by targeted alignment of the fungal and polysaccharide fibers within it. “We combine the proven methods for processing fiber-based materials with the emerging field of living materials,” explains Nyström. Sinha adds: “Our mycelium is a living fiber composite, so to speak.” The researchers can control the fungal material’s properties by changing the conditions under which the fungus grows. It would also be conceivable to use other fungal strains or species that produce other functional macromolecules. Working with the living material also presents certain challenges. “Biodegradable materials always react to their environment,” says Nyström. “We want to find applications where this interaction is not a hindrance but maybe even an advantage.” However, its biodegradability is only part of the story for the mycelium. It is also a biodegrader: The split-gill mushrooms can actively decompose wood and other plant materials. Sinha sees another potential application here: “Instead of compostable plastic bags, it could be used to make bags that compost the organic waste themselves,” says the researcher. The fungal film reacts reversibly to moisture and could be used for bio-based humidity sensors. © Empa There are also promising applications for the mycelium in the field of sustainable electronics. For example, the fungal material shows a reversible reaction to moisture and could be used to produce biodegradable moisture sensors. Another application that Nyström’s team is currently working on combines the living material with two other research projects from the Cellulose and Wood Materials laboratory: the fungal biobattery and the paper battery. “We want to produce a compact, biodegradable battery whose electrodes consist of a living ‘fungal paper’,” says Sinha. Original publication A Sinha, LG Greca, N Kummer, C Wobill, C Reyes, P Fischer, S Campioni, G Nyström: Living Fiber Dispersions from Mycelium as a New Sustainable Platform for Advanced Materials; Advanced Materials (2025); doi: 10.1002/adma.202418464 Author Anna Ettlin Source EMPA, press release, 2025-05-13. Supplier Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-23 renewable carbon news
Permalink to INERATEC Produces First Green Hydrogen-Based E-Fuel at Pioneering Commercial Plant in Frankfurt, Germany  [科技资讯]

INERATEC, a leading provider of sustainable e-fuel solutions, has produced the first liters of synthetic e-fuels and e-waxes at its… Full text: https://fuelcellsworks.com/2025/05/16/green-hydrogen/ineratec-produces-first-green-hydrogen-based-e-fuel-at-pioneering-commercial-plant-in-frankfurt-germany Source Fuel Cells Works, 2025-05-16. Supplier Breakthrough Energy Ventures Bundesministerium für Umwelt und Verbraucherschutz (BMUV) ENGIE Group European Innovation Fund European Investment Bank (EIB) Honda INERATEC - Innovative Reactor Technology Piva Capital Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-22 renewable carbon news
Permalink to Starch-based microplastics could cause health risks in mice, study finds [科技资讯]

Microscopic fragments from starch-based plastics (similar to those shown here) caused negative health impacts in mice, including changes to organ tissues, metabolic functions and gut microbiota diversity. © Kononov Oleh/Shutterstock.com Wear and tear on plastic products releases small to nearly invisible plastic particles, which could impact people’s health when consumed or inhaled. To make these particles biodegradable, researchers created plastics from plant starch instead of petroleum. An initial study published in ACS’ Journal of Agricultural and Food Chemistry shows how animals consuming particles from this alternative material developed health problems such as liver damage and gut microbiome imbalances. “Biodegradable starch-based plastics may not be as safe and health-promoting as originally assumed,” says Yongfeng Deng, the corresponding author of the study. Microplastics (plastic pieces less than 5 millimeters wide) are entering human bodies through contaminated water supplies, foods and drinks — and even IV infusions. Scientists have linked plastic particles in the bloodstream and tissues to various health risks. For example, a study found that people with inflammatory bowel disease have more microplastics in their feces. Biodegradable plastics have been presented as a safer, more environmentally friendly alternative to traditional petroleum-based plastics. One of the most common types comes from starch, a carbohydrate found in potatoes, rice and wheat. However, there is a lack of information on how starch-based biodegradable plastics affect the body. A team of researchers led by Deng tackled this issue by exploring these effects in animal trials. © ACS The researchers compared three groups of five mice: one group consuming normal chow and two groups consuming food infused with starch-based microplastics. The doses (low and high) were calculated and scaled from what an average human is expected to consume daily. They fed the mice for 3 months and then assessed the animals’ organ tissues, metabolic functions and gut microbiota diversity. Mice exposed to the starch-based plastic particles had: Multiple damaged organs, including the liver and ovaries, with more pronounced damage in the high-dose group. However, mice eating normal chow showed normal organ tissue biopsies. Altered glucose management, including significant abnormality in triglycerides (a type of fat) and disruption in molecular biomarkers associated with glucose and lipid metabolism, compared to mice fed normal chow. Dysregulated genetic pathways and specific gut microbiota imbalances, which the researchers suggest could alter microplastic-consuming animals’ circadian rhythms. “Prolonged low-dose exposure to starch-based microplastics can lead to a broad spectrum of health impacts, particularly perturbing circadian rhythms and disrupting glucose and lipid metabolism,” says Deng. However, the researchers acknowledge that because this is one of the first studies examining the impacts of consuming starch-based microplastics, further research is needed to understand how these biodegradable particles break down in the body. The authors acknowledge funding from the Natural Science Foundation of China, the Jiangsu Province Young Science and Technology Talent Support Program, the Joint Fund of Departments and Schools, the Start-up Research Fund, and the Zhishan Young Scholars Fund of Southeast University by the Fundamental Research Funds for the Central Universities. About the American Chemical Society The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio. Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org. Source ACS, press release, 2025-04-09. Supplier American Chemical Society (ACS) Jiangsu Ocean University (JOU) Jinan University Southeast University Share Renewable Carbon News – Daily Newsletter Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals Subscribe

发布时间:2025-05-22 renewable carbon news
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共4458条,446页