This study analyzes mid-21st century projections of daily surface air minimum (T-min) and maximum (T-max) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2A degrees C or higher increases in T-min and T-max for all seasons. However, there are much greater (> 3A degrees C) increases in T-max during summer at higher elevations and in T-min during winter at lower elevations. T-max increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. T-min increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.