Spatio-temporal simulation of permafrost geothermal response to climate change scenarios in a building environment

Permafrost Geothermal Regime 3D Geothermal Modeling Climate Warming Impact Permafrost Engineering
["Zhou, Fuqun","Zhang, Aining","Li, Robert","Hoeve, Ed"] 2009-05-01 期刊论文
(2-3)
Significant climate warming, as observed over the past decades and projected by global climate models, would inevitably cause permafrost degradation in the Arctic regions. Several studies have been conducted to assess geothermal response to climate change in natural conditions; no study, however, has been observed yet to examine the potential response of the permafrost geothermal regime in a building environment. This paper presents a methodology and the results of a case study in the community of Inuvik. Canada of the spatio-temporal dynamics simulation of the geothermal regime under climate change scenarios in a building environment. A process-based, surface-coupled, 3-dimensional geothermal model was used for the simulation. The results suggest that the permafrost under the study would deteriorate under all the three climate change scenarios assessed, and the rate of the deterioration would depend on geotechnical properties of subsurface materials and climate change scenarios. Two patterns of the geothermal dynamics were revealed from the simulation results: spatially, there are significant differences in the rate of increase in active layer thickness underneath vs. around a building; and temporally, there is an abrupt rise in the active layer thickness around the middle of this century. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
来源平台:COLD REGIONS SCIENCE AND TECHNOLOGY