Tropical Belt Width Proportionately More Sensitive to Aerosols Than Greenhouse Gases
["Zhao, Xueying","Allen, Robert J","Wood, Tom","Maycock, Amanda C"]
2020-04-16
期刊论文
(7)
The tropical belt has widened during the last several decades, and both internal variability and anthropogenic forcings have contributed. Although greenhouse gases and stratospheric ozone depletion have been implicated as primary anthropogenic drivers of tropical expansion, the possible role of other drivers remains uncertain. Here, we analyze the tropical belt width response to idealized perturbations in multiple models. Our results show that absorbing black carbon (BC) aerosol drives tropical expansion, and scattering sulfate aerosol drives contraction. BC, especially from Asia, is more efficient per unit radiative forcing than greenhouse gases in driving tropical expansion, particularly in the Northern Hemisphere. Tropical belt expansion (contraction) is associated with an increase (decrease) in extratropical static stability induced by absorbing (scattering) aerosol. Although a formal attribution is difficult, scaling the normalized expansion rates to the historical time period suggests that BC is the largest driver of the Northern Hemisphere tropical widening but with relatively large uncertainty. Plain Language Summary The tropical belt has widened over the past several decades, and this is associated with poleward movement of the descending branches of the Hadley Cell and the subtropical dry zones. Internal climate variability and anthropogenic forcers-including greenhouse gases and stratospheric ozone depletion-are important contributors. Leveraging idealized single-forcing experiments, we show that anthropogenic aerosols, including black carbon and sulfate, drive significant tropical expansion and contraction, respectively. Aerosols, particularly those emitted from Asia, are more efficient than greenhouse gases in perturbing tropical belt width. Although relatively large uncertainty exists, linearized scaling suggests that black carbon is the dominant driver of the Northern Hemisphere tropical widening over the historical time period.
来源平台:GEOPHYSICAL RESEARCH LETTERS