["Yi, Yonghong","Chen, Richard H","Nicolsky, Dmitry","Moghaddam, Mahta","Kimball, John S","Romanovsky, Vladimir E","Miller, Charles E"]2019-01-01期刊论文
Currently, the community lacks capabilities to assess and monitor landscape scale permafrost active layer dynamics over large extents. To address this need, we developed a concept of a remote sensing based Soil Inversion Model for regional Permafrost (SIM-P) monitoring. The current SIM-P framework includes a satellite-based soil process model and a soil dielectric model. We are also working on incorporating a radar scattering model for Arctic tundra into the SIM-P framework. A unified soil parameterization scheme was developed to harmonize key soil thermal, hydraulic and dielectric parameters in the soil process and radar models that can be used in the joint soil-radar inversion framework. The soil parameter retrievals of the SIM-P framework include soil organic content (SOC) and active layer thickness (ALT). Initial tests of SIM-P using in-situ soil permittivity observations showed reasonable accuracy in predicting site-level SOC and soil temperature profiles at an Alaska tundra site and ALT in Arctic Alaska. SIM-P will be further tested using airborne P- and L-band radar data collected during NASA's Arctic Boreal Vulnerability Experiment (ABoVE) to evaluate the sensitivity of longwave radar to active layer properties.
来源平台:2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)