Dual carbon isotope-based brown carbon aerosol characteristics at a high-altitude site in the northeastern Himalayas: Role of biomass burning

Carbonaceous aerosols Optical properties Long-range transport Radiocarbon Relative radiative forcing
["Devaprasad, M","Rastogi, N","Satish, R","Patel, A","Dabhi, A","Shivam, A","Bhushan, R","Meena, R"] 2024-02-20 期刊论文
PM2.5 samples (n = 34) were collected from January to April 2017 over Shillong (25.7 degrees N, 91.9 degrees E; 1064 m amsl), a high-altitude site situated in the northeastern Himalaya. The main aim was to understand the sources, characteristics, and optical properties of local vs long-range transported carbonaceous aerosols (CA) using chemical species and dual carbon isotopes (13C and 14C). Percentage biomass burning (BB)/biogenic fraction (fbio, calculated from 14C) varied from 67 to 92 % (78 +/- 7) and correlated well with primary BB tracers like f60, and K+, suggesting BB as a considerable source. Rain events are shown to reduce the fbio fraction, indicating majority of BB-derived CA are transported. Further, delta 13C (-26.6 +/- 0.4) variability was very low over Shillong, suggesting it's limitations in source apportionment over the study region, if used alone. Average ratio of absorption coefficient of methanol-soluble BrC (BrCMS) to water-soluble BrC (BrCWS) at 365 nm was 1.8, indicating a significant part of BrC was water-insoluble. A good positive correlation between fbio and mass absorption efficiency of BrCWS and BrCMS at 365 nm with the higher slope for BrCMS suggests BB derived water-insoluble BrC was more absorbing. Relative radiative forcing (RRF, 300 to 2500 nm) of BrCWS and BrCMS with respect to EC were 11 +/- 5 % and 23 +/- 16 %, respectively. Further, the RRF of BrCMS was up to 60 %, and that of BrCWS was up to 22 % with respect to EC for the samples with fbio >= 0.85 (i.e., dominated by BB), reflecting the importance of BB in BrC RRF estimation.
来源平台:SCIENCE OF THE TOTAL ENVIRONMENT