Plant water source effects on plant-soil feedback for primary succession of terrestrial ecosystems in a glacier region in China
["Dong, Wenchang","Wang, Genxu","Sun, Juying","Guo, Li","Chang, Ruiying","Wang, Wenzhi","Wang, Yukun","Sun, Xiangyang"]
2024-06-01
期刊论文
Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (delta 2H and delta 18O) and leaf delta 13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this researchemphasizes the critical influence of water source selection on plant succession dynamics while elucidating un- derlying mechanisms linking succession with plant water consumption.
来源平台:SCIENCE OF THE TOTAL ENVIRONMENT