Characteristics of PM2.5 emitted from the combustion of vehicular fuel and solid biomass: Thermally fractionated carbon, δ13C values, and filter-based light absorption
["Samiksha, Shilpi","Raman, Ramya Sunder","Prakash, Jai","Padhi, Annada","Habib, Gazala","Sanyal, Prasanta","Bhardwaj, Ankur"]
2022-06-01
期刊论文
(6)
Thermal-optical fractions of organic carbon (OC), elemental carbon (EC), delta C-13 and optical properties of PM(2.5 )from Vehicular Fuel Emissions (VFEs) and Biomass Mixed Fuel Emissions (BMFEs) in India were examined. Heterogeneities in these species across Bharat Stage (BS) emission standards, vehicle type and cooking processes were also captured. Results suggest that distributions of OC and EC sub-fractions and Mass Absorption Efficiency (MAE) are driven by the fuel type, operating, combustion conditions, and emissions control strategies. Variability in thermal-optical fractions of carbon was useful not only in delineating VFEs and BMFEs but also in differentiating compositionally similar sources like gasoline and diesel. The mean delta C-13 value for diesel exhaust (- 26.3 +/- 1.3 parts per thousand) was marginally higher than the value (-27.0 +/- 1.2 parts per thousand) for gasoline and BMFEs. The Brown Carbon (BrC) content in VFEs was <10% while it constituted similar to 60% of the BMFEs. The MAE of both EC and OC of all the sources were calculated at 7 wavelengths (405 nm, 445, 532, 632, 780,808, and 980 nm) and heterogeneity was observed across vehicle types (higher MAEs for MUVs), fuel type (lowest MAEoc values for gasoline-powered vehicles) and BS divisions (BSII category vehicles shown highest MAEs) along with light absorption by OC and EC emitted by these sources. The results of this study characterizing the chemical, optical and isotopic signatures of PM2.5 from three major combustion sources will be useful in enhancing source identification and resolution in source apportionment efforts and in radiative forcing calculations.
来源平台:ATMOSPHERIC POLLUTION RESEARCH