Identification of key aerosol types and mixing states in the central Indian Himalayas during the GVAX campaign: the role of particle size in aerosol classification
["Dumka, U. C","Kaskaoutis, D. G","Mihalopoulos, N","Sheoran, Rahul"]
2021-03-20
期刊论文
Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Angstrom exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named large/BC mix dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to large/low-absorbing aerosols and only 3.9% is characterized as BC-dominated. The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole. (C) 2020 Elsevier B.V. All rights reserved.
来源平台:SCIENCE OF THE TOTAL ENVIRONMENT