Divergent Responses of Alpine Rock Glaciers to Climate Change: A Review of Ecological and Abiotic Dynamics
["Piccinelli, S","Cannone, N"]
2025-04-21
期刊论文
Periglacial processes and permafrost-related landforms, such as rock glaciers, are particularly vulnerable to climate change because of their reliance on sustained low temperatures to maintain permafrost integrity. Rising temperatures lead to permafrost thawing, increased active layer thickness, and ground instability, which disrupt the structural and ecological stability of these environments. Rock glaciers, which are ubiquitous in high mountain systems, are especially sensitive to these changes and serve as key geo-indicators of current or past alpine permafrost conditions, reflecting the multifaceted impacts of warming on both ecological and abiotic components. In this review, we synthesize current scientific knowledge on the complex and divergent responses of alpine rock glaciers to climate change, highlighting a wide range of methodologies employed to study the complex interactions between climatic drivers and rock glacier dynamics. We first explore ecological impacts, focusing on how climatic changes influence vegetation patterns, species composition, and overall biodiversity associated with rock glaciers. Subsequently, we examine the dynamic behavior of rock glaciers, including their structural integrity, movement patterns, and hydrological roles within high mountain ecosystems. By integrating findings from various disciplines, this review underscores the importance of multidisciplinary approaches and long-term monitoring to advance our understanding of rock glacier ecosystem dynamics and their role in periglacial processes under climate change. Our synthesis identifies critical knowledge gaps, such as the uncertain drivers of divergent rock glacier responses and the limited integration of ecological and abiotic data in existing studies. We highlight research priorities, including the establishment of regional monitoring networks and the development of predictive models that incorporate vegetation and permafrost interactions. These insights provide actionable guidance for adaptive management strategies to mitigate the ecological and geological impacts of climate change on these unique and sensitive environments.
来源平台:PERMAFROST AND PERIGLACIAL PROCESSES