Integration of critical state theory into a micromechanical model for granular materials accounting for fabric evolution

Granular materials Constitutive model Micromechanics Multiscale Critical state Fabric anisotropy
["Wang, Hai-Lin","Gu, Xiaoqiang","Yin, Zhen-Yu","Zhao, Chao-Fa"] 2025-10-01 期刊论文
In geotechnical engineering, the development of efficient and accurate constitutive models for granular soils is crucial. The micromechanical models have gained much attention for their capacity to account for particle-scale interactions and fabric anisotropy, while requiring far less computational resources compared to discrete element method. Various micromechanical models have been proposed in the literature, but none of them have been conclusively shown to agree with the critical state theory given theoretical proof, despite the authors described that their models approximately reach the critical state. This paper modifies the previous CHY micromechanical model that is compatible with the critical state theory based on the assumption that the microscopic force-dilatancy relationship should align with the macroscopic stress-dilatancy relationship. Moreover, under the framework of the CHY model, the fabric anisotropy can be easily considered and the anisotropic critical state can be achieved with the introduction of the fabric evolution law. The model is calibrated using drained and undrained triaxial experiments and the results show that the model reliably replicates the mechanical behaviors of granular materials under both drained and undrained conditions. The compatibility of the model with the critical state theory is verified at both macroscopic and microscopic scales.
来源平台:COMPUTERS AND GEOTECHNICS