["Nechita, Constantin","Camarero, J. Julio"]2025-08-01期刊论文
The pedunculate oak (Quercus robur L.) is a major tree species in Europe, but it has faced recent growth decline and dieback events in some areas resulting in economic and ecosystem losses. In the southeastern edge of its natural distribution in eastern Romania, rising temperatures since the 1980s, when a shift towards warmer and more arid conditions occurred, increased evaporative demand and triggered growth decline. We analyzed the adaptive potential of six oak stands (333 individual trees) with ages ranging between 97 and 233 years, located in three wet and three dry sites. Results showed unstable climate-growth correlations with a breakpoint after 1985 when climate warming intensified. Wet soil conditions from early spring to summer enhanced growth; on the contrary, a high evaporative demand linked to warmer conditions and greater potential evapotranspiration reduced growth, particularly in wet sites. After 1985, drought stress induced a reduction in latewood width in dry sites. The relationship between growth and summer-autumn drought intensified during the last decades in all sites. Warmer spring conditions negatively affected oak growth, particularly latewood production. Wet sites had lower resilience indices, and we also noted a post-1985 progressive reduction of growth resilience. Slow-growing trees from dry sites showed growth decline, which could be an early-warning signal of impending dieback and tree death. In contrast, fast-growing trees from wet sites showed sustained relative growth improvement, which was attributed to tree age and size effects. After 1985, the pedunculate oak is more vulnerable to drought damage in dry sites near the southeastern distribution limit in response to hotter winter-spring droughts.