Coastal processes affecting the clayey sediments of the exposed mudflats on the receding western Dead Sea shore

Alluvial fan clustered sinkholes lateral spreading mudflat sediment narrow bay sea retreat sediment creep subsidence strip
Shoval, Shlomo 2025-04-11 期刊论文
The present study documents coastal processes of movement and subsidence that affect the clayey sediments of the exposed mudflats ('mudflat sediments') on the receding western shore of the Deep Dead Sea ('western Dead Sea shore') and the formation of subsidence features: subsidence strips and clustered sinkholes. The properties of the clayey sediments that promote movement and subsidence and the development of the subsidence features in the exposed mudflats are the unconsolidated fine-particle texture composed of clay and carbonate minerals, their being dry near the surface and wet at the subsurface, their soaking with saline water and brine and the abundance of smectitic clays saturated with sodium and magnesium. Field observations indicate that narrow subsidence strips with/without clustered sinkholes were developed by movement and subsidence in mudflat sediments via lateral spreading. Wide subsidence strips with clustered sinkholes were developed via increased subsidence in mudflat sediments due to the progress of dissolution within a subsurface rock-salt unit. The emergence of sinkholes occurs via subsidence of mudflat sediments into subsurface cavities resulting from dissolution within a subsidence rock-salt unit. The coastal processes on the receding Dead Sea shore and the formation of the subsidence features are part of the adjustment of the Dead Sea periphery to the lowering of the base level. A contribution of slow mass movement seaward to the coastal processes on the receding Dead Sea shore is indicated.
来源平台:CLAY MINERALS