Effect of soft viscoelastic biopolymer inclusion on cyclic liquefaction resistance of loose sand

Viscoelastic biopolymer Biogrout Gelatin Undrained cyclic loading Liquefaction resistance Loose sand Cyclic simple shear
["Noh, Dong-Hwa","Kwon, Tae-Hyuk","Kim, Jongkwan","Han, Jin-Tae"] 2025-09-01 期刊论文
This study explores the effectiveness of soft viscoelastic biopolymer inclusions in mitigating cyclic liquefaction in loosely packed sands. This examination employs cyclic direct simple shear testing (CDSS) on loose sand treated with gelatin while varying the gelatin concentration and the cyclic stress ratio (CSR). The test results reveal that the inclusion of soft, viscoelastic gelatin significantly reduces shear strain and excess pore pressure during cyclic shear. Liquefaction potential, defined as the number of cycles to liquefaction (NL) at an excess pore pressure ratio (ru = Delta u/sigma ' vo) of 0.7, is substantially improved in gelatin-treated sands compared to gelatin-free sands. This improvement in liquefaction resistance is more pronounced as the inclusion stiffness increases. Furthermore, the viscoelastic pore-filling inclusion helps maintain skeletal stiffness during cyclic shearing, resulting in a higher shear modulus in gelatin-treated sand in both small and large-strain regimes. At a grain scale, pore-filling viscoelastic biopolymers provide structural support to the skeletal frame of a loosely packed sand. This pore filler mitigates volume contraction and helps maintain the effective stress of the soil structure, thereby reducing liquefaction potential under cyclic shearing. These findings underscore the potential of viscoelastic biopolymers as bio-grout agents to reduce liquefaction risk in loose sands.
来源平台:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING