Seasonal effects of altitude and vegetation on litter and organic carbon in deciduous and coniferous forest soils

Forest soil CO 2 soil flux 13C 15N Mineralisation process C stock
["De Feudis, M","Massaccesi, L","Poesio, C","Antisari, L. Vittori","Bol, R","Agnelli, A"] 2025-07-01 期刊论文
This study investigated seasonal changes in litter and soil organic carbon contents of deciduous and coniferous forests at two altitudes (500 and 1000 m a.s.l.), which were used as proxies for temperature changes. To this aim, adjacent pine (P500 and P1000) and deciduous forests (downy oak forest at 500 m a.s.l. and beech forest at 1000 m a.s.l., D500 and D1000, respectively) were selected within two areas along the western slope of a calcareous massif of the Apennine chain (central Italy). Periodic sampling was carried out within each site (a total of 19 sampling dates: 6 in autumn, 4 in winter and spring, and 5 in summer), taking each time an aliquot of the upper mineral soil horizon and measuring litter thickness and CO2 emission from the soil. The samples were then analyzed for their content of organic C, total N, water-soluble organic C and N (WEOC and WEN, respectively), and the natural abundance of 13C and 15N. Soil and litter C and N stocks were calculated. The chemical and isotopic data suggested that organic C and N transformations from litter to the upper mineral soil horizon were controlled not only by temperature but also by the quality (i.e. C:N ratio) of the plant material. In particular, the more the temperature decreased, the more the quality of the organic matter would influence the process. This was clearly showed by the greater 13C fractionation from litter to soil organic matter (SOM) in D1000 than in P1000, which would indicate a higher degree of transformation under the same thermal condition of the plant residues from the deciduous forest, which were characterized by a more balanced C:N ratio than the pine litter. However, while at 500 m altitude a significant SOM 13C fractionation and a parallel increase in soil CO2 emissions occurred in the warmer seasons, no seasonal delta 13C variation was observed at 1000 m for both forests, despite the different quality of SOM derived from deciduous and coniferous forests. Our findings suggested that organic C and N transformations from litter to the upper soil mineral horizon were greatly controlled by the quality of the plant residues, whereas soil temperature would seem to be the major driver for the seasonal evolution of SOM. This study, by considering two different vegetation types (deciduous and coniferous), allowed to evaluate the combined interactions between the plant residue quality and temperature in controlling litter and SOM mineralisation/accumulation processes.
来源平台:GEODERMA