Regional-scale flood mapping using naive Bayes and remote sensing: towards local relevance

flood extent flood inundation flood prediction machine learning
["Kuchinski, Vinicius","de Paiva, Rodrigo Cauduro Dias"] 2025-06-13 期刊论文
Floods are devastating natural disasters causing significant damage worldwide, especially in southern Latin America, where recurrent river floods lead to severe impacts. This study proposes an innovative flood modelling approach using a naive Bayes classifier to simulate flood extents at a regional scale, incorporating spatial and temporal variability. Using 12 features, including topography, soil properties, precipitation and discharge, the model was trained with multiple flood events, avoiding sampling limitations and evaluating optimal pre-processing strategies for continuous data. The predictive capacity resulted in high performance metrics, with temporal validation accuracy (AC) up to 0.98 and a critical success index (CSI) of 0.58, and spatial validation achieved an AC up to 0.97 and CSI of 0.56, outperforming the hydrodynamic model by 65%. A reduced model with significant features improved computational efficiency and achieved a CSI exceeding 0.60. This practical tool supports flood risk management and enhances resilience in vulnerable regions.
来源平台:HYDROLOGICAL SCIENCES JOURNAL