SABO-Optimized VMD for Seismic Damage Assessment of Frame Structures Considering Soil-Structure Interaction
["Zhou, Jian","Zhang, Yaokang","Wang, Hehe","Yang, Jinping","Li, Peizhen","Wang, Jingxia"]
2025-05-26
期刊论文
(11)
Accurate structural health monitoring (SHM) is crucial for ensuring safety and preventing catastrophic failures. However, conventional parameter identification methods often assume a fixed-base foundation, neglecting the significant influence of soil-structure interaction (SSI) on the dynamic response, leading to inaccurate damage assessments, especially under seismic loading. Therefore, we introduce a novel approach that explicitly incorporates SSI effects into parameter identification for frame structures, utilizing an optimized variational mode decomposition (VMD) technique. The core innovation is the application of the Subtraction Average-Based Optimizer (SABO) algorithm, coupled with permutation entropy as the fitness function, to optimize the critical VMD parameters. This SABO-VMD method was rigorously validated through a shaking table test on a 12-story frame structure on soft soil. Comparative analysis with EMD and conventional VMD demonstrated that SABO-VMD provides a superior time-frequency representation of the structural response, capturing non-stationary characteristics more effectively. A novel energy entropy index, derived from the SABO-VMD output with SSI, was developed for quantitative damage assessment. It revealed 8.1% lower degree of structural damage compared to the fixed-base assumption. The proposed SABO-VMD-based approach, by explicitly accounting for SSI, offers a substantial advancement in SHM of frame structures, leading to more reliable safety evaluations and improved seismic resilience.
来源平台:BUILDINGS