The response of the bridge to the assessment of flood damage is constrained by a restricted examination of soilspecific vulnerabilities and the hydrodynamic forces linked to local scour. The research study will, consequently, aim to address these knowledge gaps in assessing the structural susceptibility of bridges to flooding in very stiff clay (type B) and medium dense sand (type C) soil. This research aims to analyse the behaviour and response of the bridge model when subjected to varying depths of local scour across different soil types. To accomplish this objective, a three-dimensional numerical model is employed for a standard three-span reinforced concrete bridge. In the conducted experiment, a total of 192 scenarios were simulated, considering four distinct levels of local scour depth across two different soil types. The analytical results indicated a notable increase in pier displacement because of the augmented scour depth. The recorded displacement in medium dense sand exhibited a 42 percent increase because of the rise in scour depth. Consequently, it was determined that the impact of erosion caused by flooding on bridges spanning rivers must be accounted for when designing the bridges' foundation.