The coupled temporal effects and micro-mechanism of root reinforcement and dry-wet cycles on the strength of herb-loess composite

Dry-wet cycle Root reinforcement Shear strength Temporal effects Micro-mechanism
["Mao, Zhengjun","Wang, Munan","Xu, Guozheng","Geng, Mimi","Ma, Xu","Gao, Guangsheng","Tian, Yanshan","Wang, Lidong","Xi, Yu"] 2025-11-01 期刊论文
To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.
来源平台:SOIL & TILLAGE RESEARCH