Reliability analysis on horizontal displacement of monopiles under cyclic loading using Einav-Randolph and response surface model

Monopile Cyclic load Reliability analysis Sensitivity analysis Soil parameter uncertainty
["Wu, Junpeng","Liu, Kaifu","Zhang, Jie"] 2025-08-01 期刊论文
The horizontal displacement of monopile under cyclic loading is subject to uncertainty due to variations in metocean conditions and soil parameters at offshore wind farms. However, the current design for cyclically loaded monopiles relies on the p-y method recommended by API and DNV, which does not accurately capture the horizontal displacement of the monopiles. In this study, finite element simulations are performed using ABAQUS, where the soil is modeled with the Einav-Randolph model to account for soil softening effects. The impact of parameter uncertainties, such as soil stiffness, undrained shear strength, and the pile-soil friction coefficient, on the reliability index of the monopile's horizontal displacement for different length diameter (L/D) ratios is investigated. A case study is provided to assess the horizontal displacement reliability of a monopile under cyclic loading. The results show that the horizontal displacement reliability index decreases as the coefficient of variation (COV) of the random variables, the correlation coefficient, and the monopile's L/D ratio increase. Conversely, the reliability index increases with an increase in the allowable horizontal displacement. The horizontal displacement reliability index is most sensitive to soil stiffness, followed by undrained shear strength and pile-soil friction coefficient. The findings of this study offer valuable insights into how parameter uncertainties influence the horizontal displacement of monopiles under cyclic loading.
来源平台:OCEAN ENGINEERING