Temperature-dependent acoustic emission characteristics and statistical constitutive model of granite under uniaxial compression
["Bu, Mohua","Guo, Pingye","Jin, Xin","Wang, Meng","Zhang, Peng","Wang, Jiamin"]
2025-05-01
期刊论文
(5)
Understanding the temperature-dependent mechanical behavior and fracture characteristics of granite is crucial for many engineering projects. In this study, the real-time temperature curves of granite specimens were obtained during the heating and cooling process, and the thermal treatment tests were conducted. The physical properties of the specimen before and after thermal treatment, including mass, volume, and P-wave velocity, were measured. The acoustic emission (AE) signal in the uniaxial compression is monitored. The results indicate that the physical properties of granite deteriorate with temperature, while the mechanical properties show two effects of thermal strengthening and thermal weakening. This phenomenon is comprehensively analyzed by literature statistical data and optical microscopic observation. Furthermore, the AE characteristic is strongly dependent on temperature. High temperature induces more AE ring count to appear in the early stage of loading. As the temperature increases, the crack initiation stress decreases and the table crack propagation stage becomes longer. The attenuation of high-frequency signals and the enhancement of low-frequency signals are related to the development and interaction mechanism of thermally-induced crack and stress-induced crack. At 600 degrees C, the global b-value increases significantly. Meanwhile, the evolution of dynamic b-value helps explain the failure process of granite under axial load after thermal treatment. In addition, a new thermo-mechanical damage statistical constitutive model of granite considering temperature effects is proposed by introducing AE parameters. The main advantages of this model can well fit the nonlinear behavior of granite in the early loading stage after thermal treatment, and reflect the failure process of granite before the peak value. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
来源平台:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING