A back-propagation neural network optimized by genetic algorithm for rock joint roughness evaluation

Rock joint Joint roughness coefficient Genetic algorithm-optimized backpropagation (GA-BP) neural network Shear strength
["Song, Leibo","Xie, Jieru","Jiang, Quan","Wang, Gang","Zhong, Shan","Han, Guansheng","Wu, Jinzhong"] 2025-05-01 期刊论文
(5)
The joint roughness coefficient (JRC) is a key parameter in the assessment of mechanical properties and the stability of rock masses. This paper presents a novel approach to JRC evaluation using a genetic algorithm-optimized backpropagation (GA-BP) neural network. Conventional JRC evaluations have typically depended on two-dimensional (2D) and three-dimensional (3D) parameter calculation methods, which fail to fully capture the nonlinear relationship between the complex surface morphology of joints and their roughness. Our analysis from shear tests on eight different joint types revealed that the strength and failure characteristics of the joints not only exhibit directional dependence but also positively correlate with surface dip angles, heights, and back slope morphological features. Subsequently, five simple statistical parameters, i.e. average dip angle, median dip angle, average height, height coefficient of variation, and back slope feature value (K), were utilized to quantify these characteristics. For the prediction of JRC, we compiled and analyzed 105 datasets, each containing these five statistical parameters and their corresponding JRC values. A GA-BP neural network model was then constructed using this dataset, with the five morphological characteristic statistics serving as inputs and the JRC values as outputs. A comparative analysis was performed between the GA-BP neural network model, the statistical parameter method, and the fractal parameter method. This analysis confirmed that our proposed method offers higher accuracy in evaluating the roughness coefficient and shear strength of joints. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
来源平台:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING