Study on effect of fibers reinforcement on sand soil liquefaction mitigation and shield tunnel stability under seismic conditions

Seismic responses Shield tunnel Liquefiable foundation Carbon fibers Shaking table test
["Shen, Jun","Bao, Xiaohua","Chen, Xiangsheng","Bao, Zhizao","Cui, Hongzhi"] 2025-09-01 期刊论文
Fiber reinforcement has been demonstrated to mitigate soil liquefaction, making it a promising approach for enhancing the seismic resilience of tunnels in liquefiable strata. This study investigates the seismic response of a tunnel embedded in a liquefiable foundation locally improved with carbon fibers (CFs). Consolidated undrained (CU), consolidated drained (CD), and undrained cyclic triaxial (UCT) tests were conducted to determine the optimal CFs parameters, identifying a fiber length of 10 mm and a volume content of 1 % as the most effective. A series of shake table tests were performed to evaluate the effects of CFs reinforcement on excess pore water pressure (EPWP), acceleration, displacement, and deformation characteristics of both the tunnel and surrounding soil. The results indicate that CFs reinforcement significantly alters soil-tunnel interaction dynamics. It effectively mitigates liquefaction by enhancing soil stability and slowing EPWP accumulation. Ground heave is reduced by 10 %, while tunnel uplift deformation decreases by 61 %, demonstrating the stabilizing effect of CFs on soil deformation. The fibers network interconnects soil particles, improving overall structural integrity. However, the increased shear strength and stiffness due to CFs reinforcement amplify acceleration responses and intensify soil-structure interaction, leading to more pronounced tunnel deformation compared to the unimproved case. Nevertheless, the maximum tunnel deformation remains within 3 mm (0.5 % of the tunnel diameter), posing no significant structural risk from the perspective of the experimental model. These findings provide valuable insights into the application of fibers reinforcement for improving tunnel stability in liquefiable foundations.
来源平台:TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY