Assessing Thermal Activity and Ecological Response in Coal-Waste Dumps: A Case Study of Chorzów Dump

burning coal heaps ecological indicators thermal imaging Upper Silesian Coal Basin
["Abramowicz, Anna K","Rahmonov, Oimahmad","Ciesielczuk, Justyna"] 2025-06-05 期刊论文
The Upper Silesian Coal Basin faces ongoing challenges with self-heating in coal waste dumps, a problem that leads to dangerous and unpredictable subsurface fires. This study investigates the thermal dynamics and vegetation response in a coal waste dump, expanding on previous research that links waste temperatures with plant health and distribution. The study area-a small, old coal waste dump located in a highly urbanized area-was subjected to comprehensive environmental monitoring focused on various fire determinants. The findings confirm that coal waste dumps, regardless of size and complexity, experience similar fire determinants, with vegetation colonization progressing in bands starting with pioneer species in less heat-affected areas. As the distance from the fire zone increases, plant density and diversity improve, indicating a recovery in thermally stabilized zones. The study also demonstrates the repeatability of relationships between subsurface temperatures and vegetation status across different coal waste dumps, supporting the use of plants as indicators of underground fires. Elevated subsurface temperatures in thermally active zones lead to clear 'dying' and 'death' zones, where excessive heat damages plant roots, causing die-offs. In contrast, areas with moderate temperatures allow vegetation growth, even in winter, due to favourable root-zone conditions. The study highlights the need for improved monitoring and fire mitigation strategies to address thermal activity in reclaimed sites, especially those with limited historical data. These insights are crucial for preventing similar issues in the future and minimizing the long-term impacts on surrounding communities and ecosystems.
来源平台:LAND DEGRADATION & DEVELOPMENT