Pollution risk assessment and source apportionment of potentially toxic elements in agricultural soils using the APCS-MLR model: a case study near a non-ferrous metal smelting slag site in Gejiu, Yunnan
["Peng, Chao-liang","Wang, Zhe","Luo, Ying","Zhang, Jia-Qian","Zhang, Zhen-Long","Chen, Yi-ming","Ye, Kai","Lin, Wen-xue","Zhang, Jing-yan","Xie, Teng-jiao"]
2025-05-28
期刊论文
(6)
Industrial development has caused significant environmental damage, especially through potentially toxic element (PTE) pollution. Combining pollution indices, health risk assessment, spatial autocorrelation (Moran's I), and receptor modeling (APCS/MLR), this study quantified sources and risks of heavy metals in smelting-adjacent farmland soils, facilitating targeted PTE pollution mitigation. Soil analysis revealed significantly elevated mean concentrations of As (326 mg/kg), Cd (23 mg/kg), Cr (104 mg/kg), Cu (106 mg/kg), Ni (73 mg/kg), Pb (274 mg/kg), and Zn (660 mg/kg), all exceeding Yunnan provincial background values. The average total non-carcinogenic risk index (HIadult = 2, HIchild = 11) and total carcinogenic risk index (TCRadult = 5.52 x 10-4, TCRChild = 6.44 x 10-4) for both adults and children exceeded the threshold (HI = 1, TCR = 1 x 10-04). The results of environmental pollution evaluation show that the overall pollution in the study area is a heavy pollution level. The ACPS-MLR model showed that Cd and Zn in soil mainly came from industrial activities (37%). Cu and Pb were derived from motor vehicle emissions and agricultural activities (20%). As may be derived from agricultural and industrial activities. Furthermore, based on the combination of source apportionalization and the spatial distribution of environmental pollution, the northeastern part of the study area and transportation hubs are the key pollution areas and need to be given priority for treatment. PTEs accumulate in the soil, will be enriched through the food chain, and seriously threaten human health and soil ecological environment. Therefore, this study can provide a basis for identifying, preventing, and controlling the risk of PTEs pollution in soil.
来源平台:ENVIRONMENTAL MONITORING AND ASSESSMENT