Sustainable Stabilization Utilizing Clay Soil Silicomanganese Slag-based Geopolymer
["Karimi, A. H","Keramati, M","Falamaki, A"]
2025-11-01
期刊论文
(11)
This research explores the stabilization of clay soil through the application of geopolymer binder derived from silicomanganese slag (SiMnS) and activated by sodium hydroxide (NaOH). This research aims to evaluate the effects of key parameters, including the percentage of slag, the activator-to-stabilizer ratio, and curing conditions (time and temperature), on the mechanical properties of the stabilized soil. Unconfined compressive strength (UCS) tests were conducted to assess improvements in soil strength, while scanning electron microscopy (SEM) was employed to analyze the microstructural changes and stabilization mechanisms. The results demonstrated that clay soil stabilized with SiMnS-based geopolymers exhibited significant strength enhancement. Specifically, the sample stabilized with 20% SiMnS and an activator-to-slag ratio of 1.6, cured at room temperature for 90 days, achieved a UCS of 27.03 kg & frasl;cm2. The uniaxial strength was found to be positively correlated with the SiMnS content, activator ratio, curing time, and temperature. Additionally, the strain at failure remained below 1.5% for all samples, indicating a marked improvement in soil stiffness. SEM analysis revealed that geopolymerization led to the formation of a dense matrix, enhancing soil particle bonding and overall durability. These results emphasize the potential of SiMnS-based geopolymers as a sustainable and effective soil stabilizer for geotechnical applications.
来源平台:INTERNATIONAL JOURNAL OF ENGINEERING