Coupled thermo-hydro-mechanical analysis of multi-stage artificial ground freezing for tunneling. A case study for sequential versus simultaneous freezing

Artificial ground freezing Tunneling Frost heave Phase transition
["Liu, Yingxiao","Sun, Waiching"] 2025-09-01 期刊论文
This computational study focuses on the thermo-hydro-mechanical simulations of the behaviors of freezing soils used for artificial ground freezing (AGF) in a metro project. Leveraging the experimental and field data available in the literature, we simulate the sequential freezing and excavation of a twin tunneling that occurred in months during the actual construction of the tunnel. A thermo-hydro-mechanical model is developed to capture the multi-physical rate-dependent behaviors triggered by phase transitions, as well as the creeping and secondary consolidation of the soil skeleton and the ice crystals. We then calibrate the material models and establish the THM finite element model coupled with the rate-dependent multi-physical models, which may accurately predict the surface heave induced by ground freezing throughout the project. To showcase the potential of using simulations to guide the AGF, we simulate the scenario where a simultaneous freezing scheme is employed as an alternative to the actual sequential scheme design. We then compared the simulated performance with the recorded results obtained from the sequential scheme. Finally, parametric studies on the effect of ground temperature, the porosity of the frozen soil, and the intrinsic elastic modulus of the solid skeleton are conducted. The maximum surface heave is inferred from finite element simulations to quantify the sensitivity and the impact on the safety of AGF operations.
来源平台:COMPUTERS AND GEOTECHNICS