Shear behavior of gravel-block soil of the Qinghai-Tibet Plateau based on large-scale direct shear test and numerical simulation
["Wen, Tao","Jia, Wenjun","Quan, Zhi","Guo, Wei","Wang, Yankun","Chen, Ningsheng"]
2025-06-01
期刊论文
(6)
The shear behavior of gravel-block soil (GBS) is unique and significant for evaluation the failure mechanism of GBS landslide on the Qinghai-Tibet Plateau. This study focuses on interpreting the shear behavior observed in the GBS during large-scale direct shear tests conducted on a landslide in Jiacha County, Tibet, China. The tests considered coarse particle content (CPC), dry density, and moisture conditions. Additionally, a discrete element numerical model, scaled to match the laboratory testing dimensions, was developed to simulate the large-scale direct shear tests on GBS. Results indicated that an increase in CPC improves the strength of the GBS, as it enhances the framework strength through interlocking between gravel blocks and between gravel blocks and the soil mass. The critical CPC for shear failure of the GBS exhibits a decreasing trend as the dry density increases. Furthermore, particle crushing rate (PCR) of the GBS is positively correlated with CPC, vertical pressure, and dry density. The simulation results show good agreement with the test results, providing insights into the damage-shear fracture mechanism of typical GBS under large-scale direct shear tests. The research outcomes provide a theoretical basis for the prevention and control of geological hazards in the Qinghai-Tibet Plateau.
来源平台:BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT