A systematic review on the application progress of phase change materials in energy piles
["Onaizi, Ali M","Tang, Waiching","Huseien, Ghasan Fahim","Alhassan, Mohammad","Onaizi, Sagheer A"]
2025-09-01
期刊论文
The incorporation of PCMs in energy piles holds significant potential for revolutionising thermal management in construction, making them a crucial component in the development of next-generation systems. The existing literature on PCM-integrated energy piles largely consists of isolated case studies and experimental investigations, often focusing on specific aspects without providing a comprehensive synthesis to guide future research or practical applications. To date, no review has been conducted to consolidate and evaluate the existing knowledge on PCMs in energy piles, making this review the first of its kind in this field. Up until now, this gap in research has limited our understanding of how PCM configurations, thermal properties, and integration methods impact the thermal and mechanical performance of these systems. Through thoroughly analysing the current research landscape, this review discovers key trends, methodologies, and insights. The methodology used here involved a systematic search of the existing SCI/SCIE-indexed literature to ensure a structured review. Based on the SLR findings, it is evident that current research on PCMs in energy piles is focused on improving thermal efficiency, heat transfer, and compressive strength. Furthermore, precise adjustments in melting temperature significantly impact efficiency, with PCM integration boosting thermal energy extraction by up to 70 % in some cases, such as heating cycles, and saving up to 30 % in operational costs. PCMs also reduce soil temperature fluctuations, improving structural integrity through minimising axial load forces. However, challenges remain, including reduced mechanical strength due to voids and weak bonding, high costs, and complexities such as micro-encapsulation. We acknowledge that there are gaps in addressing certain key factors, including thermal diffusivity; volume change during phase transitions; thermal response time; compatibility with construction materials; interaction with soil, creep, and fatigue; material compatibility and durability; and the long-term energy savings associated with PCM-GEP systems.
来源平台:APPLIED THERMAL ENGINEERING