Evolution of cross-anisotropic behavior of clay under 3D stress conditions

Clay Cross anisotropy Isotropic stress probe Plastic strain Rotational kinematic hardening True triaxial test
["Anantanasakul, Pongpipat","Kaliakin, Victor N"] 2025-04-29 期刊论文
Consolidated-drained true triaxial tests with constant b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} values were performed on normally consolidated cross-anisotropic kaolin clay. Isotropic stress probes were incorporated into these true triaxial tests to study the orientations of plastic strain increment vectors and positioning of the plastic potential surface at different levels of shearing. An isotropic compression test was also performed to characterize the cross-anisotropic response of the clay. Pronounced cross-anisotropy was observed in the K0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{0}$$\end{document} consolidated kaolin clay during shear, particularly when the major and minor principal stresses were perpendicular and parallel to the axis of material symmetry, respectively. A simple rotational kinematic hardening mechanism incorporated into the single hardening constitutive model for soil has been found to fairly accurately simulate the evolution of anisotropy in the form of expansion and rotation of the yield and plastic potential surfaces during true triaxial shearing.
来源平台:ACTA GEOTECHNICA