Experimental Investigation into Permeable Asphalt Pavement Based on Small-Scale Accelerated Testing

permeable pavement porous asphalt accelerated pavement testing mechanical properties strain
["Yang, Bing","Li, Hui","Li, Yingtao","Cheng, Murong","Sun, Yang","Han, Yuzhao"] 2025-04-15 期刊论文
(8)
The durability of permeable pavement needs to be further studied by accelerated pavement testing (APT). Full-scale APT facilities are commonly associated with a very high initial investment and operational costs. A piece of small-scale accelerated testing equipment, the model mobile load simulator (MMLS), was used to investigate and evaluate the mechanical properties of three types of permeable asphalt pavements, including a 4 cm porous asphalt layer with cement-treated permeable base (4PA-CTPB), 7 cm porous asphalt layer with cement-treated permeable base (7PA-CTPB), and 7 cm porous asphalt layer with cement-treated base (7PA-CTB). Under different conditions of subgrade soil, transverse and longitudinal strains at the bottom of the porous asphalt layer and average rut depth and temperature data were collected. The results indicated that 4PA-CTPB produced the maximum average rut depth but minimum resilient tensile strain. The transverse resilient tensile strain of 7PA-CTPB was significantly higher than the other two structures under both wet and dry conditions. The transverse resilient tensile strain significantly increased with increasing loading cycles with a decreasing rate, which could be affected by both load and temperature. MMLS could be used to explore and evaluate the mechanical properties of permeable asphalt pavement. From the data under dry and wet conditions, it may be better to increase the strength of the subgrade, where a suitable hydraulic conductivity coefficient should be considered.
来源平台:APPLIED SCIENCES-BASEL