Screening sesame (Sesamum indicum) for resistance to multiple root-knot nematode species (Meloidogyne spp.)

sesame greenhouse guava root-knot nematode southern root-knot nematode northern root-knot nematode peanut root-knot nematode reproductive factor
["Chavez, Marcela","Gorny, Adrienne","Post, Angela","Suchoff, David"] 2025-02-01 期刊论文
(1)
Root-knot nematodes (RKN; Meloidogyne spp.) are among the most damaging plant-parasitic nematodes. They parasitize almost every species of higher plant and induce the formation of galls along the plant roots, which are detrimental to plant growth. North Carolina's leading field crops are sweetpotato (Ipomoea batatas (L.) Lam.), soybean (Glycine max L. Merr), cotton (Gossypium hirsutum L.), and tobacco (Nicotiana tabacum L.), which are all hosts to several root-knot nematode species. This pathogen represents a major threat to farmers, obligating them to seek alternative crops that are non-host to root-knot nematodes that will help decrease soil populations and provide economic revenue. We tested seven sesame cultivars for their host status and potential resistance to four Meloidogyne species (M. arenaria, M. incognita, M. enterolobii, and M. hapla). We inoculated sesame seedlings with 1,000 nematode eggs of each species. Sixty days after inoculation, we harvested the plants to evaluate a visual gall severity rating, measure final egg counts, and calculate the reproductive factor (RF). All sesame cultivars had a significantly lower RF than the tomato (Solanum lycopersicum L.) cv. Rutgers control for all species of RKN except M. arenaria. The RF values for sesame cultivars inoculated with M. incognita and M. hapla were not significantly different from one another; however, there were significant differences in RF among sesame cultivars inoculated with M. enterolobii, suggesting that genetic variability of the host may play an important role in host status and conferring resistance.
来源平台:JOURNAL OF NEMATOLOGY