Evaluation of a New Methodology to Determine Elastic Modulus of Subgrade and Base Course Based on Multipoint Load Drops to Simulate the Effects of Moving Vehicles

infrastructure geology and geoenvironmental engineering geotechnical instrumentation and modeling instrumentation development transportation earthworks soil mechanics
["Akmaz, Emre","Tanyu, Burak","Guler, Erol"] 2025-04-03 期刊论文
Almost all of the existing testing methods to determine elastic modulus of the soil or aggregate for pavement design involve the application of repetitive loads applied at a single point. This approach falls short of representing the conditions that are observed when the wheel of a vehicle rolls over the surface. This study presents a new methodology, in which light weight deflectometer (LWD) is used to apply three adjacent sequential loads repetitively to replicate a multipoint loading of the surface. The elastic modulus values obtained from these multipoint LWD tests were compared against the repetitive single point LWD test results. The multipoint LWD test elastic modulus values were consistently lower than the values obtained from the single point LWD tests. The single point LWD tests showed an increase in elastic modulus with increased load repetition. The multipoint LWD results did not show an increase in the elastic modulus as a function of repetitive loading. This study showed that damping ratio values provide guidance to explain differences in the elastic modulus with an increased number of load repetitions. In repetitive single point tests, the applied load caused initial compaction, and in multipoint LWD tests, it caused disturbance in the ground. With increased load cycles, the ground reached a stabilized condition in both tests. The methodology presented in this study appeared to minimize the unintended compaction of the ground during the single point LWD tests to determine the elastic modulus.
来源平台:TRANSPORTATION RESEARCH RECORD