Moso bamboo alleviates Uranium/Cadmium stress through altering the rhizosphere micro-environment and regulating roots carbon and nitrogen metabolism
["Chen, Peng","Yuan, Lili","Zhou, Zijun","Xu, Gang","Chen, Wenbo","Cao, Yin","Li, Chen","Fu, Qinchao","Fan, Wei","Hu, Shanglian"]
2025-07-01
期刊论文
Uranium/cadmium (U/Cd) pollution poses a significant global environmental challenge, and phytoremediation offers a sustainable solution for heavy metal contamination. However, the mechanisms by which plants survive U/Cd stress remain unclear. Here, we conducted soil culture experiments of moso bamboo seedlings under U/Cd stress (U, Cd and U + Cd) to examine the effects of it on plant growth, mineral metabolism, and rhizosphere micro-environment. Our findings reveal that U/Cd stress inhibits seedling growth, enhances reactive oxygen species damage, and bolsters the antioxidant system. Additionally, Partial Least Squares Path Modeling (PLS-PM) was employed to uncover potential tolerance mechanisms in moso bamboo under U/Cd stress. U/Cd is mainly distributed in the root cell walls and also exists predominantly in the residual state within the roots. Correspondingly, U and Cd significantly disrupt mineral metabolism in plant. Metabolomic analyses indicate that U/ Cd markedly suppress amino acid metabolism pathways, while they stimulate carbon metabolism to mitigate toxicity. Furthermore, U/Cd stress disrupts the rhizosphere microbial community structure, and the competitive interaction of nitrogen functions exists between rhizosphere microorganism and bamboo roots. PLS-PM reveal the U/Cd stress impacts the interaction of the soil-rhizosphere-plant system. Together, these findings offer new insights into the response mechanism of bamboo plants to heavy metal stress, and provide a theoretical foundation for screening heavy metal tolerant plants and managing mining areas.
来源平台:ENVIRONMENTAL RESEARCH