Cumulative deformation behavior of fiber-modified iron tailings under cyclic loading

Roadbed engineering Iron tailings Intermittent loading Progressive loading Deformation characteristics Rebound modulu Dynamic-static ratio
["Wang, Biao","Shi, Lei","Jiang, Ping","Chen, Yewen","Li, Na","Wang, Wei","Wang, Zhi Chao"] 2025-07-01 期刊论文
Polypropylene fiber and cement were used to modify iron tailings and applying it to roadbed engineering is an important way to promote the sustainable development of the mining industry. However, the existing studies are mostly concerned with the static mechanical properties, and lack the deformation characteristics of cyclic loading under different loading modes. The effects of fiber content, dynamic-static ratio (Rcr) and curing age on the deformation characteristics of fiber cement modified iron tailing (FCIT) under different cyclic loading modes were explored through dynamic triaxial tests. The research results show that: (1) Polypropylene fibers significantly reduced the cumulative strain of FCIT. Under intermittent loading, the cumulative strain decreased by 36 similar to 43 %, and under continuous loading, the cumulative strain decreased by 48 similar to 55 %. (2) The deformation behavior of FCIT under both intermittent and progressive loading was in a plastic steady state with cumulative strain <= 1 %. (3) The cumulative strain variation of FCIT with intermittent loading of 0.316 % was significantly lower than that with continuous loading of 0.417 %, and the resilience modulus was higher with intermittent loading. (4) The stress history effect of step-by-step loading can be eliminated by the translational superposition method, and the strain evolution law under continuous loading is predicted based on the progressive loading data, and the minimum error between the expected and actual results is 6.5 % when Rcr is 0.1.
来源平台:CASE STUDIES IN CONSTRUCTION MATERIALS