To safeguard historic centers with masonry buildings in medium-high seismic areas, the local seismic response (LSR) should be used. These portions of the urban areas are commonly characterized by complex subsurface features (i.e., underground cavities, buried anthropic structures, and archeological remains) that could be responsible for unexpected amplifications at period intervals similar to the building's ones. In this study, San Giustino's Square (Chieti, Italy) was considered due to the differentiated damage caused by the 2009 L'Aquila earthquake mainshock (6 April 2009 at 3:32 CEST, 6.3 Mw). Out of the eight buildings overlooking the square, the structure that suffered the heaviest damage was the Justice Palace. Two-dimensional finite element analyses have been carried out in San Giustino's square to predict the LSR induced by the seismic shear wave propagation. The influence of the Chieti hill, the anthropogenic shallow soil deposit, and the manmade cavity were investigated. The results outlined that the amplifications of the seismic shaking peaked between 0.2 and 0.4 s. The crest showed amplifications over a wide period range of 0.1-0.8 s with an amplification factor (FA) equal to 2. Throughout the square, FA = 2.0-2.4 was predicted due to the cavities and the filled soil thickness. The large amplified period range is considered responsible for the Justice Court damage.