Mesoscopic mechanism behind the inherent reliquefaction resistance subjected to repeated earthquakes using centrifuge modelling and advanced digital image processing

Reliquefaction Centrifuge model Digital image processing Excess pore pressure Average coordination number
["Padmanabhan, Gowtham","Maheshwari, Bal Krishna","Ueda, Kyohei","Uzuoka, Ryosuke"] 2025-03-01 期刊论文
(2)
Around the world severe damages were observed due to reliquefaction during repeated earthquakes, whereas precise understanding of its mesoscopic mechanism is not much discovered. Influence of these earthquakes on reliquefaction needs to be investigated to understand its significance in contributing to inherent sand resistance. In the present study, centrifuge model experiments were performed to examine the influence of foreshocks/aftershocks and mainshock sequence on resistance to reliquefaction. Two different shaking sequences comprising six shaking events were experimented with Toyoura sand specimen with 50 % relative density. Acceleration amplitude and shaking duration of a mainshock is twice that of foreshock/aftershock. In-house developed advanced digital image processing (DIP) technology was used to estimate mesoscopic characteristics from the images captured during the experiment. The responses were recorded in the form of acceleration, excess pore pressure (EPP), subsidence, induced sand densification, cyclic stress ratio, void ratio and average coordination number. Presence of foreshocks slightly increased the resistance against EPP before it gets completely liquefied during the mainshock. Similarly, aftershocks also regained the resistance of liquefied soil due to reorientation of particles and limited generation of EPP. However, application of mainshocks triggered liquefaction and reliquefaction and thus eliminated the beneficial effects achieved from the prior foreshocks. Reliquefaction was observed to be more damaging than the first liquefaction, meanwhile the induced sand densification from repeated shakings did not contribute to increased resistance to reliquefaction. The apparent void ratio estimated from the DIP technology was in good agreement with real void ratio values. Average coordination number indicated that the sand particles moved closer to each other which resulted in increased resistance during foreshocks/aftershocks. In contrast, complete liquefaction and reliquefaction have destroyed the dense soil particle interlocking and made specimen more vulnerable to higher EPP generation. (c) 2025 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
来源平台:SOILS AND FOUNDATIONS