Field efficacy of a bioherbicide mimic (DiS-NH2) in a nanoparticle formulation for weed control in durum wheat
["Scavo, Aurelio","Rodriguez-Mejias, Francisco J","Chinchilla, Nuria","Molinillo, Jose M. G","Schwaiger, Stefan","Weiss, Alexander K. H","Mauromicale, Giovanni","Macias, Francisco A"]
2025-07-01
期刊论文
(7)
BACKGROUND Weed-resistance phenomena have increased dramatically in recent years. Bioherbicides can offer a sustainable alternative to chemical weed control but they often have low water solubility and therefore low efficacy in the field. The research reported here represents the first study on the field efficacy against weeds of a nanoencapsulated bioherbicide mimic of aminophenoxazinones, namely DiS-NH2 (2,2 '-disulphanediyldianiline). Field experiments were carried out across three different locations to evaluate the bioherbicide disulphide mimic at standard (T1, 0.75 g m(-2)) and double (T2, 1.5 g m(-2)) doses when compared to no weed control (NC) and chemical weed controlled (PC) in durum wheat. RESULTS The nanoencapsulated bioherbicide displayed better soil permeability than the free compound and also showed lower ecotoxicity on comparing the toxic doses on the Caenorhabditis elegans nematode model. It was found that T2 gave the best performance in terms of phytotoxicity (-57% weed biomass when compared with NC) and crop yield enhancement (3.2 versus 2.2 Mg ha(-1) grain yield), while T1 showed comparable results to PC. T1 and T2 did not cause shifts in weed communities and this is consistent with a broad spectrum of phytotoxicity. Moreover, the nanoparticle formulation tested in this study provided stable results across all three locations. CONCLUSION It is reported here for the first time that a nanoencapsulated DiS-NH2 bioherbicide mimic provided an efficient post-emergence and contact bioherbicide that can control a wide range of weed species in durum wheat without damaging the crop. The mimic also has low ecotoxicity and improved soil permeability. (c) 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
来源平台:PEST MANAGEMENT SCIENCE