The impacts of freeze-thaw cycles on polypropylene fiber-reinforced clayey soil stabilized with alkali-activated fly ash

Clayey soil Geopolymer Unconfined compressive strength (UCS) Fly Ash (FA) Polypropylene fiber (PPF) Freeze-thaw cycles (FTCs)
["Rajaee, Arash","Talebi, Nafiseh","Abrishami, Saeed"] 2025-07-01 期刊论文
Geopolymers are recently recognized as superior sustainable alkali-activated materials (AAMs) for soil stabilization because of their strong bonding capabilities. However, the influence of freeze-thaw cycles (FTCs) on the performance of geopolymer-stabilized soils reinforced with fibers remains largely unexplored. In the current study, for the first time, the durability of polypropylene fiber (PPF) reinforced clayey soil stabilized with fly ash (FA) based geopolymer is investigated under FTCs, evaluating its performance during prolonged seasonal freezing. The effects of repeated FTCs (0, 1, 3, 6, and 12 cycles), different contents of alkali-activated FA (5 %, 10 %, and 15 %), varying PPF percentages (0 %, 0.4 %, 0.8 %, and 1.2 % with a length of 6 mm), and curing time (7 and 28 days) on the properties of stabilized samples have been determined through tests including standard Proctor compaction, unconfined compressive strength (UCS), mass loss, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The results revealed that a 0.4 % PPF concentration maximized strength in FA-based geopolymer samples by restricting crack propagation, irrespective of FA content, number of FTCs, or curing time. However, higher PPF contents lowered UCS values and Young's modulus due to fiber clustering and increased failure strain, respectively. Generally, an initial increase in UCS, Young's modulus, and resilience modulus (MR) of stabilized samples occurred with more FTCs because of their dense structure, delayed pore formation, and continued geopolymerization process and followed by a constant or decreasing trend in strength after 6 (or 3 in some cases) FTCs due to ice expansion in created air voids. Longer curing time resulted in denser samples with improved resistance to FTCs, especially under 12 FTCs. Moreover, samples with 10 % alkali-activated FA demonstrated the least susceptibility to FTCs. While initial FTCs caused no mass loss, subsequent cycles led to increased mass loss and remained below 2 % for all samples. Microstructural analysis results corroborated UCS test results. Although the primary chemical composition remained unchanged after 12 FTCs, these cycles induced morphological changes such as critical void formation and cracking within the gel structure. The stabilization approach proposed in this study demonstrated sustained UCS after 12 FTCs, promising reduced maintenance costs and extended service life in regions with prevalent freeze-thaw damage.
来源平台:CASE STUDIES IN CONSTRUCTION MATERIALS