The protective roles of boron against copper excess in citrus roots: Insights from physiology, transcriptome, and metabolome
["Chen, Xu-Feng","Huang, Wei-Tao","Shen, Qian","Huang, Wei-Lin","Lu, Fei","Yang, Lin-Tong","Lai, Ning-Wei","Huang, Zeng-Rong","Chen, Li-Song"]
2025-04-01
期刊论文
Boron (B) deficiency and copper (Cu) excess are common problems in citrus orchard soils. Citrus sinensis seedlings were exposed to 25 (B25) or 2.5 (B2.5) mu M H3BO3 and 0.5 (Cu0.5) or 350 (Cu350) mu M CuCl3 for 24 weeks. Cu350 upregulated 2210 (1012) genes and 482 (341) metabolites and downregulated 3201 (695) genes and 175 (43) metabolites in roots at B2.5 (B25). Further analysis showed that the B-mediated mitigation of Cu toxicity in roots involved the coordination of the following aspects: (a) enhancing the ability to maintain cell wall and plasma membrane stability and function; (b) lowering the impairment of Cu350 to primary and secondary metabolisms and enhancing their adaptability to Cu350; and (c) alleviating Cu350-induced oxidative stress via the coordination of reactive oxygen species (ROS) and methylglyoxal detoxification systems. Cu350 upregulated the abundances of some saccharides, amino acids and derivatives, phospholipids, secondary metabolites, and vitamins, and the expression of several ROS detoxification-related genes in roots of B2.5-treated seedlings (RB2.5), but these adaptive responses did not prevent RB2.5 from Cu-toxicity (oxidative damage). The study identified some genes, metabolites, and metabolic processes/pathways possibly involved in root Cu tolerance. Additionally, the responses of gene expression and metabolite profiling to Cu-B treatments differed between leaves and roots. Therefore, this study provided novel information for B to reduce Cu toxicity in roots and might contribute to the development of soil amendments targeting Cu excess in citrus and other crops.
来源平台:PLANT PHYSIOLOGY AND BIOCHEMISTRY