Heat resistance and biodegradable bio-based waterborne polyurethane promoted by quercetin
["Yang, Xinrui","Zhang, Mengyao","Song, Xin","Zhou, Chao","Liu, Li","Wu, Guangfeng"]
2025-03-01
期刊论文
To address the depletion of non-renewable resources and align with the principles of green development, researchers increasingly turned to natural plant extracts to synthesise bio-based waterborne polyurethanes (BWPU) as a sustainable alternative to conventional petroleum-derived BWPUs. Although BWPU demonstrated low emissions and non-toxic characteristics, they still exhibited limitations in heat resistance and relatively reduced biodegradability. Thus, to enhance the overall performance of BWPU, sorbitan monooleate (SP) and quercetin (QC) were incorporated into the formulation of hybrid waterborne polyurethane (CWPU). As natural bio-based hybrid materials, QC and SP facilitated the formation of cross-linking networks and hydrogen bonds, enhancing intermolecular interactions and conformational stability in self-cross-linking CWPU. The research concentrated on investigating the chemical structure, mechanical properties, thermal characteristics, and biodegradability of CWPU. The results demonstrated that the introduction of QC constructed a dense cross-linking network, leading to an increase in elongation at the break of CWPU from 460 % to 864 %. Under the condition of 5 % weight loss (T5%), the thermal stability of CWPU was significantly enhanced, with the decomposition temperature increasing from 200 to 243 degrees C. In addition, after degradation in soil and in a 0.6 % lipase PBS buffer for 28 days, the weight of CWPU decreased to 53 % and 48 %, respectively. CWPU can optimise the utilisation of BWPU in biomedical and packaging applications, thereby contributing to innovations in environmentally friendly materials.
来源平台:PROGRESS IN ORGANIC COATINGS