This study evaluates the utilization of rice straw as a reinforcement material in dredged slurry, focusing on sustainable waste-to-waste treatment practices. Unconfined compressive strength (UCS) tests were conducted on slurries with varying straw contents and sizes, including samples pretreated via pure water immersion. The study also analyzed the desiccation behavior of straw-reinforced slurry, examining parameters such as crack initiation time, maximum crack width, surface crack ratio, and failure morphology. Results indicate that straw fiber degradation within the first 72 h of aqueous pretreatment impacts the mechanical properties and structural integrity of the reinforced slurry. The introduction of straw alters the slurry's failure mode from brittle to plastic, enhancing ductility and residual strength. Optimal reinforcement occurred with a 0.5 % straw content, pretreated for 24 h, showing significant improvements in UCS and stiffness. Additionally, straw content between 3 % and 5 % optimally reduces cracking, with straw sizes of 0.6-1.0 mm providing effective crack control without disrupting the soil matrix. These findings suggest that straw can significantly enhance both the strength and dewatering efficiency of dredged slurry, offering practical implications for geotechnical applications in construction and landfill settings.