Impact of Insect Foliar Herbivory on Soil N2O Emission and Nitrogen Dynamics in Subtropical Tree Species
["Yan, Bin","Xu, Qinqin","Yang, Yunyun","Hu, Yalin"]
2025-01-01
期刊论文
(1)
Insect foliar herbivory is ubiquitous in terrestrial ecosystems, yet its impacts on soil nitrogen cycling processes remain not yet well known. To examine the impacts of insect foliar herbivory on soil N2O emission flux and available nitrogen (N), we conducted a pot experiment to measure soil available N content and soil N2O emission flux among three treatments (i.e., leaf herbivory, artificial defoliation, and control,) in two broad-leaved trees (Cinnamomum camphora and Liquidambar formosana) and two conifer trees (Pinus massonianna and Cryptomeria fortunei). Our results showed that insect foliar herbivory significantly increased soil inorganic N (i.e., NH4+-N and NO3--N), dissolved organic nitrogen (DON) and microbial biomass nitrogen (MBN) contents, and urease activity compared to control treatment. However, there were no differences in soil available N contents and urease activity between artificial defoliation and control treatments, implying that insect foliar herbivory had greater impacts on soil available N contents compared to physical damage of leaves. Moreover, soil N2O emission fluxes were increased by insect foliar herbivory in Cinnamomum camphora and Pinus massonianna, but not for the other two tree species, indicating various effect of insect foliar herbivory on soil N2O emission among tree species. Furthermore, our results showed the positive correlations between soil N2O emission flux and soil NO3--N, DON, MBN, and acid protease activity, and soil inorganic N, pH, and MBN mainly explained soil N2O emission. Our results implied that insect foliar herbivory can speed up soil nitrogen availability in subtropical forests, but the impacts on soil N2O emission are related to tree species.
来源平台:FORESTS