In order to investigate the impact of plant root systems on the stability of loess shallow slope, this study conducted plant morphology investigations and direct soil shear tests to analyse the morphological characteristics of alfalfa and the shear characteristics of alfalfa root-loess composites under different soil bulk densities and soil moisture saturation levels. Additionally, the reinforcing effect of the alfalfa root system on the reliability of loess slopes was assessed using the Monte Carlo method. Slope reliability analysis refers to the estimation of the probability of slope failure under specific conditions. The results showed that plant weight and root weight both decreased following an exponential function with increasing soil bulk density. Root weight had a positively linear correlation with plant weight. The cohesion and internal friction angle of both loess samples without roots and with roots increased with increasing soil bulk density. The cohesion and internal friction angle of the two kinds of samples could decreased at less and more than 30% soil moisture saturation. The cohesion and internal friction angle of the root-soil composites were significantly higher than those of the rootless soil. The decrease of soil bulk density and the increase of soil moisture could increase the difference of the two mechanical parameters between the two kinds of samples. Assuming the thickness of the landslide body was 0.3 m, the failure probability of loess slopes covered with alfalfa significantly decreased from 34.97 to 14.51% compared to slopes without vegetation cover. Alfalfa roots significantly increased the reliability of the loess slopes in stability.