Insect pests cause severe crop damage, resulting in substantial economic losses and threats to global food security. Conventional insecticides are low-cost chemical agents that kill the target insects and some non-specific beneficial organisms. Due to their toxic and non-biodegradable nature, these conventional insecticides persist in the environment, thus causing pollution and accumulating in the food chain. The development of novel insecticidal products based on double-stranded (dsRNA)-based RNA interference (RNAi) technology is a sustainable tool to effectively control insect pests. The dsRNA-based insecticides are known for their specificity, non-toxicity, and biodegradability. The current review introduces the dsRNA-based RNAi technique as a novel tool to control crop insect pests. The review highlights the mechanism behind dsRNA uptake into insect cells. Furthermore, it discusses the commercial aspects of different dsRNA-based products available in the market, their penetration rates, and public acceptance. The review details the latest developments in the field and the regulatory landscape regarding the technology. The advantages and limitations of dsRNA-based insecticides are discussed, and future research directions to overcome the potential challenges have been briefly suggested. The dsRNA-based insecticidal products may be a better alternative to conventional insecticides, thus delineating the resistance among insects and increasing agricultural productivity.
来源平台:PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY