Comprehensive Investigation into the Influence of Soil Composition and Water Content on Cracking Due to Drying Shrinkage in 3D-Printed Earthen Structures
["Gonzales, Betty","Zavaleta, Diana","Bertolotti, Bruno","Aguilar, Rafael","Pando, Miguel","Nakamatsu, Javier","Kim, Suyeon","Silva, Guido"]
2024-01-01
期刊论文
As a raw material for additive construction, earth offers a multitude of benefits, from environmental and economic to social points of view. However, the fresh-state properties of printable materials and the curing conditions of additively manufactured elements make large-scale 3D-printed earthen structures susceptible to suffering severe cracking from shrinkage during drying. This project investigates the effect of soil composition and water content on the development of drying shrinkage cracking in 3D-printed earthen structures. This article presents two strategies for minimizing those cracks: decreasing the clay content of the soil by adding fine sand and decreasing the required water content for printability by using a clay dispersant agent. Earth-basedmix designs with different soil/fine-sand ratios and sodium hexametaphosphate (SHMP) contents were subjected to flow table, rotational rheology, and shrinkage cracking tests. The results indicate that the clay and water content are determining factors that minimize the appearance of cracks due to drying shrinkage. Two earthen-based formulations with zero cracks due to shrinkage resulted from replacing 50% wt. of the soil with fine sand and the addition of 0.55 and 2.20% wt. of SHMP. Further research is needed to confirm the validity of these findings across diverse soil types and curing conditions.
来源平台:SECOND RILEM INTERNATIONAL CONFERENCE ON EARTHEN CONSTRUCTION, ICEC 2024