Predicting Hydro-Thermal Environment Characteristics in Underground Spaces of a Tumulus Mound

Heat transfer analysis Dew condensation Field monitoring
["Sawada, Mai","Tani, Sumire","Mimura, Mamoru"] 2024-01-01 期刊论文
Cultural properties, such as mural paintings in underground spaces, are sensitive to hydro-thermal environments. Heat transfer analysis is useful for elucidating the mechanism behind the environment-induced deterioration of cultural properties and developing countermeasures. This study measured the temperature in the stone chamber of a tumulus mound for 500 days and validated the numerical simulation of heat transfer in the tumulus mound using the response factor method. The numerically predicted temperature values were almost consistent with the measured values. However, a numerical model that does not consider the solar radiation effects causes minor deviations from the measured values in the high-temperature period. In addition to temperature prediction, the water vapor transfer and dew condensation on the stone surfaces were calculated. The results indicated that the faces where dew condensation occurred varied seasonally. A larger amount of dew is generated on the ceiling that is not covered with soil compared with other faces, which indicates that excavation of the tumulus mound for exhibition of the stone chamber can promote dew condensation and damage the stone surfaces. The heat transfer analysis conducted in this study is useful for developing measures to sustainably control the hydro-thermal environment in the stone chamber to achieve a good balance between preservation and exhibition.
来源平台:CLIMATE CHANGE ADAPTATION FROM GEOTECHNICAL PERSPECTIVES, CREST 2023