Assessing the Catastrophic Environmental Impacts on Dam Breach Using Remote Sensing and Google Earth Engine

Kakhovka dam Flood control and assessment Google earth engine Soil organic carbon Sentinel-1 synthetic aperture radar
["Abou Samra, Rasha M","Ali, R. R","Halder, Bijay","Yaseen, Zaher Mundher"] 2024-10-01 期刊论文
(13)
Despite its crucial role in flood defense for downstream regions, the catastrophic breach of the Kakhovka Dam on June 6, 2023, along the Dnipro River in Ukraine caused extensive flooding and damage both upstream and downstream. In addition, the subsequent significant drying up of the dam reservoir poses serious challenges, including hindered electricity generation, compromised flood control measures, and disrupted aquatic ecosystems. This study aims to address knowledge gaps related to the event by employing multi-temporal change detection of pre- and post-event Sentinel-1 synthetic aperture radar (SAR) imagery, analyzed using the Google Earth Engine (GEE) platform, to map flood extent and impacts. Furthermore, we assessed the impacts of dam breaches on soil organic carbon (SOC) sequestration potential in both the drying reservoir region upstream and the flooded areas downstream. The results estimated the total area of the flood extent to be approximately 379.41 km2, with an overall accuracy (OA) of 94% and a Kappa index (K) of 0.89. Quantitative analysis revealed that 81.15 km2 of urban areas, 82.59 km2 of agricultural lands, and 215.56 km2 of herbaceous wetlands were submerged by floodwaters. Both flooding and reservoir drawdown from dam collapses can significantly affect soil organic carbon (SOC) sequestration rates in affected soils. The quantification of post-disaster impacts underscores the pressing need for restoration practices and sustainable management efforts to lessen the environmental impacts and enhance the recovery of the affected regions.
来源平台:WATER RESOURCES MANAGEMENT