["Liu, Tingfa","Vinck, Ken","Ushev, Emil R","Jardine, Richard J"]2024-07-01期刊论文
(3)
Integrated field and laboratory characterisation of geomaterial behaviour is critical to foundation analysis and design for a wide range of offshore and onshore infrastructure. Challenges include the need for high -quality sampling, addressing natural and induced micro -to -macro structures, and applying soil and stress states that represent both in -situ and in-service conditions. This paper draws on the Authors' recent research with stiff glacial till, dense marine sand and low -to -medium density chalk, and focuses particularly on these geomaterials' mechanical behaviour, from small strains to failure, their anisotropy and response to cyclic loading. It considers a range of in -situ techniques as well as highly instrumented monotonic and cyclic stress -path triaxial experiments and hollow cylinder apparatus tests. The outcomes are shown to have important implications for the analysis of large driven piles under monotonic -and -cyclic, axial -and -lateral loading, and the development of practical design methods. Also highlighted are the needs for approaches that integrate field observations, advanced sampling and laboratory testing, numerical and theoretical modelling.