Macro and mesoscopic shear behavior of interface between sand and concrete with different JRC under cyclic load

Cyclic direct shear tests Discrete element method Fabric anisotropy JRC Sand-concrete interface Shear band
["Zhang, Shixun","Liu, Feiyu","Zeng, Weixiang","Ying, Mengjie"] 2024-09-01 期刊论文
(9)
To investigate the interaction mechanism between the sand-structure interface under cyclic loading, a series of cyclicdirect shear tests were conducted. These tests were designed with various surface roughness values represented by the jointroughness coefficient (JRC) of 0.4, 5.8, 9.5, 12.8, and 16.7, and normal stresses of 50, 100, 150, and 200 kPa. A 3D printerwas employed to accurately control the surface roughness and obtain concrete samples with varyingJRCvalues. The testresults were used to establish discrete element method models, which facilitated the analysis of the mesoscopic shearbehavior at the sand-structure interface during the cyclic direct shear process. The results revealed that the sand-concreteinterface demonstrated softening behavior. There is a critical value for the surface roughness corresponding to themaximum interface shear strength. The thickness of shear band, where the changes in porosity were concentrated within,increases with higher surface roughness and cycle number. The coordination number stabilizes after 80 cycles. Thedistributions of the contact normal direction and tangential contact force exhibited nearly isotropic characteristics aftercyclic loading. It was observed that surface roughness amplifies the deflection angle of the main axis in the normal contactforce distribution, while reducing that in the shear contact force distribution.
来源平台:ACTA GEOTECHNICA